Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 17

Communication Papers of the 2018 Federated Conference on Computer Science and Information Systems

Development of a mathematical model for electrode systems in rheoophthalmography

, ,

DOI: http://dx.doi.org/10.15439/2018F288

Citation: Communication Papers of the 2018 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 17, pages 8386 ()

Full text

Abstract. The problem of estimating the electrical impedance characteristics was solved using the system of impedance diagnostics of blood circulation with the help of mathematical modeling. In this work, the geometry for mathematical modeling was reconstructed; its basic quantitative characteristics were calculated. The working capacity of the model is verified on the basis of theoretical data. An example was shown by using the model to select the optimal positions of the electrodes for conducting electrical impedance studies in rheoophthalmography. As a result, an example of simulation was shown.

References

  1. P. Neittaanmäki, S. Repin and T. Tuovinen (Eds.). Mathematical Modeling and Optimization of Complex Structures; Series: Computational Methods in Applied Sciences. Springer International Publishing AG, Switzerland; E-book, XXI, 2016.
  2. C. Dym, Principles of mathematical modeling. Amsterdam: Elsevier Academic Press, 2004
  3. S. Banerjee, Mathematical Modeling: Models, Analysis and Applications. N.-Y.: Chapman and Hall/CRC, 2014.
  4. S. Pappalardo, “Mathematical modeling of biological systems”, Briefings in Bioinformatics, Volume 14, Issue 4, 2013.
  5. L. Formaggia, A. Quarteroni and A. Veneziani, Cardiovascular mathematics. Milan: Springer, 2009.
  6. R. Brent, “A partnership between biology and engineering”. Nature Biotechnology, vol. 22, no. 10, pp. 1211-1214, 2004.
  7. P. V. Luzhnov, D. M. Shamaev, E. N. Iomdina, "Using quantitative parameters of ocular blood filling with transpalpebral rheoophthalmography". IFMBE Proceedings 65: pp.37-40, 2017.
  8. P. V. Luzhnov, D. M. Shamaev, A. A. Kiseleva, E. N. Iomdina, "Analyzing rheoophthalmic signals in glaucoma by nonlinear dynamics methods". IFMBE Proceedings 68/2: pp.827-831, 2018.
  9. O. Wolkenhauer, "The role of theory and modeling in medical research", Frontiers in Physiology, vol. 4, 2013.
  10. M. Mark, Mathematical modeling. Edition: 3rd ed. Publisher: Singapore : Elsevier (Singapore), 2007.
  11. T. Witelski, M. Bowen. Methods of mathematical modelling : continuous systems and differential equations, Cham : Springer, 2015.
  12. E. Tom, K. Schulman, “Mathematical models in decision analysis”. Infec Control Hosp Epidemiol, vol. 18, pp. 65-73, 1997.
  13. R Patterson, "Electrical Impedance Tomography: Methods, History, and Applications (Institute of Physics Medical Physics Series)", Physics in Medicine and Biology, vol. 50, no. 10, pp. 2427-2428, 2005.
  14. Frerichs, J. Scholz and N. Weiler, "Electrical Impedance Tomography and its Perspectives in Intensive Care Medicine", Intensive Care Medicine, pp. 437-447, 2006.
  15. A. Adler, R. Gaburro, W. Lionheart, “Electrical Impedance Tomography”, in Handbook of Mathematical Methods in Imaging, 2nd ed O Scherzer (Ed), Springer, 2016.
  16. D. M. Shamaev, P. V. Luzhnov, E. N. Iomdina, "Modeling of ocular and eyelid pulse blood filling in diagnosing using transpalpebral rheoophthalmography". IFMBE Proceedings 65: pp.1000-1003, 2017.
  17. D. M. Shamaev, P. V. Luzhnov, E. N. Iomdina, "Mathematical modeling of ocular pulse blood filling in rheoophthalmography". IFMBE Proceedings 68/1: pp.495-498, 2018.
  18. L. Callegaro, Electrical impedance. Boca Raton: CRC Press, Taylor & Francis Group, 2016.
  19. R. D. Sinelnikov, Y. R. Sinelnikov, Atlas of human anatomy: In 4 volumes. - 7 th ed., Rev. and additional. - T. 1. - Moscow: New Wave, 2007.
  20. Luzha D. X-ray anatomy of the vascular system. Budapest: Publishing House of the Hungarian Academy of Sciences, 1973.
  21. D. M. Shamaev, P. V. Luzhnov, T. O. Pika, E. N. Iomdina, A. P. Kleyman, A. A. Sianosyan, “Applying transpalpebral rheoophthalmography to monitor effectiveness of the treatment of patients with glaucoma”. International Journal of Biomedicine 6(4): pp.287–289, 2016.
  22. C. Gabriel, Compilation of the dielectric properties of body tissues at RF and microwave frequencies / King.s College London. 1996.
  23. "BITE: Brain Images of Tumors for Evaluation database – NIST", Nist.mni.mcgill.ca, 2018. [Online]. Available: http://nist.mni.mcgill.ca/?page_id=672. [Accessed: 08- May- 2018].
  24. C. Dimas, P. Tsampas, N. Ouzounoglou, and P. Sotiriadis, "Development of a modular 64-electrodes Electrical Impedance Tomography system", 2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST), 2017.
  25. "Ultrasound image database | SPLab", Splab.cz, 2018. [Online]. Available: http://splab.cz/en/download/databaze/ultrasound. [Accessed: 08- May- 2018].