Alignment for Rooted Labeled Caterpillars
Yoshiyuki Ukita, Takuya Yoshino, Kouichi Hirata
DOI: http://dx.doi.org/10.15439/2019F338
Citation: Position Papers of the 2019 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 19, pages 19–25 (2019)
Abstract. A rooted labeled caterpillar (caterpillars, for short) is a rooted labeled tree transformed to a rooted path after removing all the leaves in it. In this paper, we design the algorithm to compute the alignment distance between caterpillars in O(h^2\lambda^3) time under the general cost function and in O(h^2\lambda) time under the unit cost function, where h is the maximum height and \lambda is the maximum number of leaves in caterpillars.
References
- T. Akutsu, D. Fukagawa, M. M. Halldórsson, A. Takasu, K. Tanaka: Approximation and parameterized algorithms for common subtrees and edit distance between unordered trees, Theoret. Comput. Sci. 470, 10–22 (2013). https://doi.org/10.1016/j.tcs.2012.11.017.
- M. M. Deza, E. Deza: Encyclopedia of distances (4th ed.) Springer (2016). https://doi.org/10.1007/978-3-662-52844-0.
- J. A. Gallian: A dynamic survey of graph labeling, Electorn. J. Combin., DS6 (2018).
- K. Hirata, Y. Yamamoto, T. Kuboyama: Improved MAX SNP-hard results for finding an edit distance between unordered trees, Proc. CPM’11, LNCS 6661, 402–415 (2011). https://doi.org/10.1007/978-3-642-21458-5 34.
- T. Jiang, L. Wang, K. Zhang: Alignment of trees – an alternative to tree edit, Theoret. Comput. Sci. 143, 137–148 (1995). https://doi.org/10.1016/0304-3975(95)80029-9.
- T. Kuboyama: Matching and learning in trees, Ph.D thesis, University of Tokyo (2007).
- C. L. Lu, Z.-Y. Su, C. Y. Yang: A new measure of edit distance between labeled trees, Proc. COCOON’01, LNCS 2108, 338–348 (2001). https://doi.org/10.1007/3-540-44679-6 37.
- K. Muraka, T. Yoshino, K. Hirata: Computing edit distance between rooted labeled caterpillars, Proc. FedCSIS’18, 245–252 (2018). http://dx.doi.org/10.15439/2018F179.
- K. Muraka, T. Yoshino, K. Hirata: Vertical and horizontal distance to approximate edit distance for rooted labeled caterpillars, Proc. ICPRAM’19, 590–597 (2019). https://dx.doi.org/10.5220/0007387205900597.
- K.-C. Tai: The tree-to-tree correction problem, J. ACM 26, 422–433 (1979). https://doi.org/10.1145/322139.322143.
- J. T. L. Wang, K. Zhang: Finding similar consensus between trees: An algorithm and a distance hierarchy, Pattern Recog. 34, 127–137 (2001). https://doi.org/10.1016/50031-3203(99)00199-5.
- Y. Yamamoto, K. Hirata, T. Kuboyama: Tractable and intractable variations of unordered tree edit distance, Internat. J. Found. Comput. Sci. 25, 307–330 (2014). https://doi.org/10.1142/50129054114500154.
- T. Yoshino, K. Hirata: Tai mapping hierarchy for rooted labeled trees through common subforest, Theory Comput. Sys. 60, 759–783 (2017). https://doi.org/10.1007/s00224-016-9705-1.
- K. Zhang: A constrained edit distance between unordered labeled trees, Algorithmica 15, 205–222 (1996). https://doi.org/10.1007/BF01975866.
- K. Zhang, T. Jiang: Some MAX SNP-hard results concerning unordered labeled trees, Inform. Process. Lett. 49, 249–254 (1994). https://doi.org/10.1016/0020-0190(94)90062-0.
- K. Zhang, J. Wang, D. Shasha: On the editing distance between undirected acyclic graphs, Internat. J. Found. Comput. Sci. 7, 45–58 (1996). https://doi.org/10.1142/S0129054196000051.