Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 19

Position Papers of the 2019 Federated Conference on Computer Science and Information Systems

A Fog Computing Architecture for Security and Quality of Service

, ,

DOI: http://dx.doi.org/10.15439/2019F348

Citation: Position Papers of the 2019 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 19, pages 6973 ()

Full text

Abstract. The Fog Computing paradigm is an emerging architecture and focuses on optimizing resources for the Internet of Things environment, bringing to the Edge, Cloud's characteristics. The demand generated by the number of possible devices in this network attracts problems related to quality of service, security, among others, attracting researchers from the most diverse areas. In our work, in addition to performing a study on selected works in a mapping process, detecting trends in the use of Fog architectures. The main contribution is presented by a security-based Fog Computing architecture using QoS for scalable environments with Docker containers for orchestration and deployment of security with SDN.


  1. L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010. http://dx.doi.org/10.1016/j.comnet.2010.05.010. [Online]. Available: http://dx.doi.org/10.1016/j.comnet.2010.05.010
  2. P. P. Ray, “A survey on Internet of Things architectures,” Journal of King Saud University - Computer and Information Sciences, vol. 30, no. 3, pp. 291–319, 2016. http://dx.doi.org/10.1016/j.jksuci.2016.10.003. [Online]. Available: https://doi.org/10.1016/j.jksuci.2016.10.003
  3. S. Yi, C. Li, and Q. Li, “A Survey of Fog Computing,” Proceedings of the 2015 Workshop on Mobile Big Data - Mobidata ’15, no. June 2015, pp. 37–42, 2015. http://dx.doi.org/10.1145/2757384.2757397. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2757384.2757397
  4. F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and Its Role in the Internet of Things,” pp. 13–15, 2012.
  5. R. Mahmud, R. Kotagiri, and R. Buyya, “Fog Computing: A Taxonomy, Survey and Future Directions,” pp. 1–28, 2016. http://dx.doi.org/10.1007/978-981-10-5861-5_5. [Online]. Available: http://arxiv.org/abs/1611.05539%0Ahttp://dx.doi.org/10.1007/978-981-10-5861-5_5
  6. P. K. Sharma, M. Y. Chen, and J. H. Park, “A Software Defined Fog Node Based Distributed Blockchain Cloud Architecture for IoT,” IEEE Access, vol. 6, pp. 115–124, 2018. http://dx.doi.org/10.1109/ACCESS.2017.2757955
  7. Y. Ai, M. Peng, and K. Zhang, “Edge computing technologies for Internet of Things: a primer,” Digital Communications and Networks, vol. 4, no. 2, pp. 77–86, 2018. http://dx.doi.org/10.1016/j.dcan.2017.07.001. [Online]. Available: https://doi.org/10.1016/j.dcan.2017.07.001
  8. K. Vohra and M. Dave, “Multi-Authority Attribute Based Data Access Control in Fog Computing,” Procedia Computer Science, vol. 132, pp. 1449–1457, 2018. http://dx.doi.org/10.1016/j.procs.2018.05.078. [Online]. Available: https://doi.org/10.1016/j.procs.2018.05.078
  9. F. Al-Doghman, Z. Chaczko, A. R. Ajayan, and R. Klempous, “A review on Fog Computing technology,” 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 001 525–001 530, 2016. http://dx.doi.org/10.1109/SMC.2016.7844455. [Online]. Available: http://ieeexplore.ieee.org/document/7844455/
  10. K. Yasumoto, H. Yamaguchi, and H. Shigeno, “Survey of Real-time Processing Technologies of IoT Data Streams,” Journal of Information Processing, vol. 24, no. 2, pp. 195–202, 2016. http://dx.doi.org/10.2197/ipsjjip.24.195
  11. C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A. Polakos, “A Comprehensive Survey on Fog Computing: State-of-the-Art and Research Challenges,” IEEE Communications Surveys and Tutorials, vol. 20, no. 1, pp. 416–464, 2018. http://dx.doi.org/10.1109/COMST.2017.2771153
  12. L. Li, S. Li, and S. Zhao, “QoS-Aware scheduling of services-oriented internet of things,” IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1497–1507, 2014. http://dx.doi.org/10.1109/TII.2014.2306782
  13. R. Prodan and S. Ostermann, “A survey and taxonomy of infrastructure as a service and web hosting cloud providers,” Proceedings - IEEE/ACM International Workshop on Grid Computing, pp. 17–25, 2009. http://dx.doi.org/10.1109/GRID.2009.5353074
  14. C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A. Polakos, “A Comprehensive Survey on Fog Computing: State-of-the-Art and Research Challenges,” IEEE Communications Surveys and Tutorials, vol. 20, no. 1, pp. 416–464, 2018. http://dx.doi.org/10.1109/COMST.2017.2771153
  15. A. Aljumah and T. A. Ahanger, “Fog computing and security issues: A review,” in 2018 7th International Conference on Computers Communications and Control (ICCCC), May 2018. http://dx.doi.org/10.1109/IC-CCC.2018.8390464 pp. 237–239.
  16. Y. Gu, K. Li, Z. Guo, and Y. Wang, “Semi-supervised k-means ddos detection method using hybrid feature selection algorithm,” IEEE Access, vol. PP, pp. 1–1, 05 2019. http://dx.doi.org/10.1109/ACCESS.2019.2917532
  17. M. I. W. Pramana, Y. Purwanto, and F. Y. Suratman, “Ddos detection using modified k-means clustering with chain initialization over landmark window,” in 2015 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC), Aug 2015. http://dx.doi.org/10.1109/ICCEREC.2015.7337056 pp. 7–11.
  18. K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic Mapping Studies in Software Engineering,” 12Th International Conference on Evaluation and Assessment in Software Engineering, vol. 17, p. 10, 2008. http://dx.doi.org/10.1142/S0218194007003112. [Online]. Available: http://www.cse.chalmers.se/~feldt/publications/petersen_ease08_sysmap_studies_in_se.pdf
  19. X. Masip-Bruin, E. Marn-Tordera, G. Tashakor, A. Jukan, and G. Ren, “Foggy clouds and cloudy fogs: a real need for coordinated management of fog-to-cloud computing systems,” IEEE Wireless Communications, vol. 23, no. 5, pp. 120–128, 2016. http://dx.doi.org/10.1109/MWC.2016.7721750
  20. D. Bruneo, S. Distefano, F. Longo, and G. Merlino, “An IoT Testbed for the Software Defined City Vision: The #SmartMe Project,” in 2016 IEEE International Conference on Smart Computing (SMARTCOMP), 2016. http://dx.doi.org/10.1109/SMARTCOMP.2016.7501678 pp. 1–6.
  21. M. S. Carmo, S. Jardim, A. V. Neto, R. Aguiar, and D. Corujo, “Towards fog-based slice-defined WLAN infrastructures to cope with future 5G use cases,” in 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA), 2017. http://dx.doi.org/10.1109/NCA.2017.8171397 pp. 1–5.
  22. J. Santos, P. Leroux, T. Wauters, B. Volckaert, and F. D. Turck, “Anomaly detection for Smart City applications over 5G low power wide area networks,” in NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium, 2018. http://dx.doi.org/10.1109/NOMS.2018.8406257. ISSN 2374-9709 pp. 1–9.
  23. X. Masip-Bruin, E. Marin-Tordera, A. Jukan, and G.-J. Ren, “Managing resources continuity from the edge to the cloud: Architecture and performance,” Future Generation Computer Systems, vol. 79, pp. 777–785, 2018. http://dx.doi.org/https://doi.org/10.1016/j.future.2017.09.036. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0167739X17302686
  24. K. S. Sahoo and B. Sahoo, “SDN Architecture on Fog Devices for Realtime Traffic Management : A Case Study SDN architecture on fog devices for realtime traffic management : A case study,” no. October, 2017. http://dx.doi.org/10.1007/978-81-322-3592-7
  25. A. Abeshu and N. Chilamkurti, “Deep Learning: The Frontier for Distributed Attack Detection in Fog-To-Things Computing,” IEEE Communications Magazine, vol. 56, no. 2, pp. 169–175, 2018. http://dx.doi.org/10.1109/MCOM.2018.1700332
  26. X. An, X. Zhou, X. Lü, F. Lin, and L. Yang, “Sample selected extreme learning machine based intrusion detection in fog computing and MEC,” Wireless Communications and Mobile Computing, vol. 2018, pp. 1–10, 2018. http://dx.doi.org/10.1155/2018/7472095
  27. S. Prabavathy, K. Sundarakantham, and S. M. Shalinie, “Design of cognitive fog computing for intrusion detection in Internet of Things,” Journal of Communications and Networks, vol. 20, no. 3, pp. 291–298, 2018. http://dx.doi.org/10.1109/JCN.2018.000041
  28. A. Diro and N. Chilamkurti, “Leveraging LSTM Networks for Attack Detection in Fog-to-Things Communications,” IEEE Communications Magazine, vol. 56, no. 9, pp. 124–130, 2018. http://dx.doi.org/10.1109/M-COM.2018.1701270