Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 19

Position Papers of the 2019 Federated Conference on Computer Science and Information Systems

A Heterogeneous Parallel Processing System Based on Virtual Multi-Bus Connection Network

, , ,

DOI: http://dx.doi.org/10.15439/2019F356

Citation: Position Papers of the 2019 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 19, pages 917 ()

Full text

Abstract. This work presents organization, architecture and synthesis as well as analysis of the reconfigurable heterogeneous parallel processing system. Reconfiguration takes place on two levels of the connection network: physical and logical. For its implementation, passive multi-channel optical networks were used. Due to its dynamic nature, the system is designed to handle computational and communication load of an explosive nature and is addressed in the first place to the production sphere of economy. The dynamically combined connection network not only prevents traffic bursts, but also based on the physical and logical circuit commutation gives the possibility of adapting to the existing traffic pattern. Although the described solution is addressed to the optical transmission environment, its effective functioning in the Ethernet networks with circuit switching and partly in wireless networks has been confirmed empirically. The theoretical foundations were verified in the design and construction of a reconfigurable super-microcomputer and the intelligent system detection of attacks addressed to industrial Internet.


  1. R. Jain, The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling, Hoboken, New Jersey, USA: Wiley & Sons, 1991.
  2. N. J. Gunther, Analyzing Computer System Performance with Perl::PDQ, Heidelberg: Springer-Verlag, Germany, 2005.
  3. P. J. Fortier and H. E. Michel, Computer Systems Performance Evaluation and Prediction, Amsterdam, NL: Digital Press, 2003.
  4. B. Greg, Systems Performance. Enterprise and the Cloud, Upper Saddle River, NJ, USA: Prentice Hall, 2014.
  5. A. Oppermann, M. Esche, F. Thiel, J.-P. Seifert, "Secure Cloud Computing: Risk Analysis for Secure Cloud Reference Architecture in Legal Metrology," in Proceedings of the Federated Conference on Computer Science and Information Systems, pp. 593-602, 2018, http://dx.doi.org/10.15439/2018F226
  6. A. D. Malony, S. Biersdorff, S. Shende, H. Jagode, S. Tomov, G. Juckeland, R. Dietrich, D. Poole and C. Lamb, "Parallel Performance Measurement of Heterogeneous Parallel Systems with GPUs," in International Conference on Parallel Processing, 2011.
  7. M. U. Asharif, F. A. Eassa, A. A. Albeshri and A. Algarni, "Performance and Power Efficient Massive Parallel Computational Model for HPC Heterogeneous Exascale," IEEE Access, vol. 6, pp. 23095-23107, 2018.
  8. K. Vanishree and M. Purnaprajna, "Work in Progress: Performance Modeling for Data Distribution in Heterogeneous Computing Systems," in International Conference on Compilers, Architectures and Synthesis for Embedded Systems (CASES), Torino, Italy, 2018.
  9. M. Hajder, H. Loutskii and W. Stręciwilk, Informatyka. Wirtualna podróż w świat systemów i sieci komputerowych, M. Hajder, Red., Rzeszów: Wydawnictwo Wyższej Szkoły Informatyki i Zarządzania, 2002.
  10. T. Sterling, M. Anderson and M. Brodowicz, High Performance Computing. Modern Systems and Practices, Cambridge, MA, USA: Morgan Kaufmann, 2018.
  11. S. Bhowmik, Cloud Computing, Cambridge: Cambridge University Press, 2017.
  12. M. Hajder and M. Kiełbus, „Matematyczny model opóźnień w sieci z komutacją pakietów,” w XV Konferencja Sieci i Systemy Informatyczne, Łódź, 2007.
  13. C. Avin and S. Schmid, "Toward demand-aware networking: a theory for self-adjusting networks," SIGCOMM Comput. Commun. Rev., vol. 48, no. 5, pp. 31-40, 2018.
  14. P. Hajder and L. Rauch, "Reconfiguration of the Multi-channel Communication System with Hierarchical Structure and Distributed Passive Switching," in ICCS 2019, Part II, LNCS 11537 proceedings, 2019.
  15. M. Hajder, Reconfigurable multichannel network communication systems architecture, Rzeszow: Wydawnictwo Wyższej Szkoły Informatyki i Zarządzania w Rzeszowie, 2018.
  16. M. Hajder and M. Bolanowski, "Connectivity Analysis in the Computational Systems with Distributed Communications in the Multichanel Environment," POLISH JOURNAL OF ENVIRONMENTAL STUDIES, vol. 17, no. 2A, pp. 14-18, 2008.
  17. M. Hajder, M. Bolanowski and L. Byczkowska-Lipińska, "A set of connection network synthesis basis on the linear diophantine constraints solution in area {0,1}," in Ogólnopolskie Warsztaty Doktoranckie. Materiały konferencji, Nałęczów, 2008.
  18. M. Hajder, Methods and facilities increasing effectiveness of designing distributed systems based on multichannels. Dissertation for the degree Doctor of Technical Science, Kyiv: National Technical University of Ukraine “Kyiv Polytechnic Institute”, 2006.
  19. J. Kunegis, "Exploiting the structure of bipartite graphs for algebraic and spectral graph theory," Internet Mathematics, vol. 11, no. 3, pp. 201-321, 2015.
  20. M. Hajder, J. Kolbusz and T. Bartczak, "Undirected graph algebra application for formalization description of information flows," in Human System Interaction (HSI), 2013 The 6th International Conference, Kraków, 2013.
  21. M. Hajder, H. Loutskii and W. Stręciwilk, Informatyka. Wirtualna podróż w świat systemów i sieci komputerowych, Rzeszów: Wydawnictwo Wyższej Szkoły Informatyki i Zarządzania w Rzeszowie, 2002.
  22. M. Hajder and P. Dymora, "A novel approach to fault tolerant multichannel networks designing problems," ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA, SECTIO AI: INFORMATICA, no. 1, pp. 66-77, 2011.
  23. М. Хайдер, "Множественный подход в системах каналов связи," Вісник Національного технічного університету України "Київський політехнічний інститут". Інформатика, управління та обчислювальна техніка, vol. 41, pp. 120-132, 2004.