Logo PTI Logo FedCSIS

Position and Communication Papers of the 16th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 26

Conception of 4-Component Architecture of Information Systems on Example of Artificial Neural Networks

DOI: http://dx.doi.org/10.15439/2021F41

Citation: Position and Communication Papers of the 16th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 26, pages 159166 ()

Full text

Abstract. Nowadays Information Systems (IS) become more and more distributed, complex, and heterogeneous. Such nature of IS make them or their components a Black Box. Although classical software operates according understandable logic, modern complex software often shows non-determinism in its operation. Artificial Intelligence (AI) based on Artificial Neural Networks (ANN) is an example of such systems. This paper considers IS architecture consisting of 4 components, one of which represents non-determinism as an ``Machine Intuition''. The architecture is derived from 3-tier computer architecture and based on psychological findings. This approach allowed building a simple and user/developer friendly model. Practical value of the architecture is concluded in ability to better understand, design, and develop the IS containing units with non-deterministic behavior, deal with AI overfitting, underfitting, and threat problems. Architecture and principles represented in this paper can be applied not only to AI/ANN but different IS types.


  1. S. Fulton, “What is quantum computing today? The how, why, and when of a paradigm shift”, 2020, https://www.zdnet.com/article/what-is-quantum-computing-understanding-the-how-why-and-when-of-quantum-computers/, accessed on 19th April 2021.
  2. L. Ng, “The AI Wolf That Preferred Suicide Over Eating Sheep”, https://onezero.medium.com/the-ai-wolf-that-preferred-suicide-over-eating-sheep-49edced3c710, accessed in July, 2021.
  3. J. Lehman, J. Clune, D. Misevic, C. Adami, L. Altenberg, J. Beaulieu, P. Bentley, S. Bernard, G. Beslon, D. Bryson, N. Cheney, P. Chrabaszcz, A. Cully, S. Doncieux, F. Dyer, K. Ellefsen, R. Feldt, S. Fischer, S. Forrest, A. Fŕenoy, C. Gagńe, L. Goff, L. Grabowski, B. Hodjat, F. Hutter, L. Keller, C. Knibbe, P. Krcah, R. Lenski, H. Lipson, R. MacCurdy, C. Maestre, R. Miikkulainen, S. Mitri, D. Moriarty, J. Mouret, A. Nguyen, C. Ofria, M. Parizeau, D. Parsons, R. Pennock, W. Punch, T. Ray, M. Schoenauer, E. Schulte, K. Sims, K. Stanley, F. Taddei, D. Tarapore, S. Thibault, R. Watson, W. Weimer, J. Yosinski, “The Surprising Creativity of Digital Evolution: A Collection of Anecdotes from the Evolutionary Computation and Artificial Life Research Communities”, Artif Life, 26 (2), pp. 274–306, 2020, https://doi.org/10.1162/artl_a_00319.
  4. L. Yaeger, “Computational genetics, physiology, metabolism, neural systems, learning, vision, and behavior or PolyWorld: Life in a new context”, Artificial Life III, vol. XVII, pp. 263-298, Addison-Wesley, 1993, https://doi.org/
  5. R. Feldt, "Generating multiple diverse software versions with genetic programming", Proc. 24th EUROMICRO Conference, vol.1 pp. 387-394, 1998, https://doi.org/10.1109/EURMIC.1998.711831.
  6. R. Cook, “How Complex Systems Fail”, Cognitive Technologies Laboratory, University of Chicago, Chicago, IL, USA, 1998.
  7. R. Williams, R. Yampolskiy, “Understanding and Avoiding AI Failures: A Practical Guide”, Philosophies, 6(3):53, 2021, https://doi.org/10.3390/philosophies6030053.
  8. S. McGregor, C. Custis, J. Yang, J. McHorse, S. Reid, S. McGregor, S. Yoon, C Olsson, R. Yampolskiy, “AI Incident Database”, 2021, https://incidentdatabase.ai/, accessed in July, 2021.
  9. P. Scott, R. Yampolskiy, “Classification Schemas for Artificial Intelligence Failures”, Delphi - Interdisciplinary Review of Emerging Technologies, vol. 2, iss. 4, pp. 186–199, 2019, https://doi.org/10.21552/delphi/2019/4/8.
  10. K. Lui, J. Karmiol, “AI Infrastructure Reference Architecture”, IBM Systems, 2018.
  11. K. Bertels, A. Sarkar, T. Hubregtsen, M. Serrao, A. A. Mouedenne, A. Yadav, A. Krol, I. Ashraf, “Quantum computer architecture: towards full-stack quantum accelerators”, Design, Automation and Test in Europe, pp. 1-6, 2020, https://doi.org/10.23919/DATE48585.2020. 9116502.
  12. N. Jones, R. Meter, A. Fowler, P. McMahon, J. Kim, T. Ladd, Y. Yamamoto, “Layered Architecture for Quantum Computing”, Phys. Rev. X 2, 031007, 2012, https://doi.org/10.1103/PhysRevX.2.031007.
  13. P. Berander, L. Damm, J. Eriksson, T. Gorschek, K. Henningsson, P. Jönsson, S. Kågström, D. Milicic, F. Mårtensson, K. Rönkkö, P. Tomaszewski, “Software quality attributes and trade-offs”, Blekinge Institute of Technology, June 2005.
  14. S. Wagner, K. Lochmann, S. Winter, A. Goeb, M. Klaes, “Quality Models in Practice: A Preliminary Analysis”, ESEM’09, 2009.
  15. S. Wagner, K. Lochmann, L. Heinemann, M. Kläs, A. Trendowicz, R. Plösch, A. Seidl, A. Goeb, J. Streit, “The Quamoco Product Quality Modelling and Assessment Approach”, 34th Int. Conf. on Software Engineering (ICSE), pp. 1133-1142, 2012, https://doi.org/10.1109/ICSE.2012.6227106.
  16. S. Wagner, K. Lochmann, S. Winter, A. Goeb, M. Kläs, S. Nunnenmacher, “Software Quality Models in Practice. Survey Results”, http://mediatum.ub.tum.de/doc/1110601/274701.pdf, accessed in July, 2021.
  17. Wikipedia, the free encyclopedia, http://en.wikipedia.org, accessed in April 2021.
  18. A. Tafti, S. Janosepah, N. Modiri, A. Noudeh, H. Alizadeh, “Development of a Framework for Applying ASYCUDA System with N-Tier Application Architecture”, Comm. in Comp. and Inf. Science, vol. 181 pp. 533-541, 2011, https://doi.org/10.1007/978-3-642-22203-0_46.
  19. Z. Durdik, “Architectural Design Decision Documentation through Reuse of Design Patterns”, KIT Scientific Publishing, 2016, https://doi.org/10.5445/KSP/1000043807.
  20. M. Fowler, “Patterns of Enterprise Application Architecture”, Addison-Wesley, 2011
  21. D. Brée, “Artificial Intelligence and Cognitive Psychology: A New Look at Human Factors”, Human-Computer Interaction, 1988, https://doi.org/10.1007/978-3-642-73402-1_17.
  22. T. Moran, S. Card, “Applying Cognitive Psychology to Computer Systems”, A Graduate Seminar in Psychology, 1980.
  23. A. E. Bolock, J. Salah, Y. Abdelrahman, C. Herbert, S. Abdennadher, “Character Computing: Computer Science meets Psychology”, MUM’18, pp. 557-562, 2018, https://doi.org/10.1145/3282894.3286060.
  24. P. Panditi, “Psychology – The Land That Software Engineering Forgot”, Proc. of Innovations in Software Engineering Conference, 2018, https://doi.org/10.1145/3172871.3172889.
  25. K. VAT, “Teaching Software Psychology: Expanding the Perspective”, Proc. of the 31st SIGCSE Technical Symposium on Comp. Sci. Ed., 2000, https://doi.org/10.1145/331795.331892.
  26. P. Young, “Understanding NLP Principles & Practice”, Crown House Publishing 2nd ed, 2004.
  27. С. Ковалёв, “Психотерапия человеческой жизни”, Москва, 2018.
  28. W. McWhinney, “Growing Into the Canopy”, Journal of Transformative Education, vol. 5 no. 3 pp. 206-220, 2007, https://doi.org/10.1177/1541344607307023.
  29. W. McWhinney, J. Webber, D. Smith, B. Novokowsky, “Creating Paths of Change: Managing Issues and Resolving Problems in Organizations”, SAGE Publications, 1997.
  30. N. Walliman, “Research Methods. The Basics”, Routledge, London, 2011.
  31. S. Epstein, “Demystifying Intuition: What it is, What it Does, and How it Does it”, Psychological Inquiry, 21, 295-312, 2010.
  32. H. Zhang, L. Zhang, Y. Jiang, "Overfitting and Underfitting Analysis for Deep Learning Based End-to-end Communication Systems", 11th Int. Conf. on Wireless Comm. and Sign. Processing (WCSP), pp. 1-6, 2019, https://doi.org/10.1109/WCSP.2019.8927876.
  33. H. Gabbar, R. Khan, “Methods to avoid over-fitting and under-fitting in supervised machine learning (comparative study)”, CompSci Comm. Instr. Dev., pp. 163–172, 2014.
  34. F. Yusufi, A. Ahmed, J. Ahmad, “Modelling and developing diabetic retinopathy risk scores on Indian type 2 diabetes patients”, Int. J. Diabetes Dev Ctries 39, pp. 29–38, 2019, https://doi.org/10.1007/s13410-018-0652-z.
  35. E.A. Martínez-García, N. Rodríguez, R. Rodríguez-Jorge, J. Mizera-Pietraszko, J. Sheba, R. Mohan, E. Magid, “Non Linear Fitting Methods for Machine Learning”, Lecture Notes on Data Engineering and Communications Technologies, vol 13 pp. 807-818, 2018, https://doi.org/10.1007/978-3-319-69835-9_76.
  36. X. Ying, “An Overview of Overfitting and its Solutions”, Journal of Physics: Conference Series, vol. 1168, issue 2, 2019, https://doi.org/10.1088/1742-6596/1168/2/022022.
  37. M. Tegmark, “An Open Letter: Research Priorities for Robust and Beneficial Artificial Intelligence, https://futureoflife.org/ai-open-letter. accessed in April 2021.
  38. G. Miller, “Artificial Intelligence Project Success Factors: Moral Decision-Making with Algorithms”, Proceedings of the 16th Con­fe­rence on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 25, pp. 379–390, 2021, http://dx.doi.org/10.15439/2021F26
  39. E. Ziemba, “The ICT adoption in enterprises in the context of the sustainable information society”, Proceedings of the Federated Conference on Computer Science and Information Systems, vol. 11 pp. 1031–1038, 2017, https://doi.org/10.15439/2017F89.
  40. M. Fanea-Ivanovici, M. Pană, "From Culture to Smart Culture. How Digital Transformations Enhance Citizens’ Well-Being Through Better Cultural Accessibility and Inclusion", IEEE Access, vol. 8, pp. 37988-38000, 2020, https://doi.org/10.1109/ACCESS.2020.2975542.