Logo PTI Logo FedCSIS

Position Papers of the 17th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 31

Prototypical investigation of the use of fuzzy measurement data in a case study in water analysis

, , ,

DOI: http://dx.doi.org/10.15439/2022F125

Citation: Position Papers of the 17th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 31, pages 2733 ()

Full text

Abstract. A common problem when using real data is the fact that the values usually exhibit some degree of uncertainty. Measurement uncertainties therefore represent a major challenge when trying to interpret and draw conclusions from real data. This is especially true in on-site analysis in the environmental sector where the uncertainty in sample plays such a large role. An approach for the modelling and analysis of data for polluted water and the inclusion of measurement uncertainties is presented. This approach is based on fuzzy modelling, in which the uncertainty of the parameters is represented by so-called fuzzy numbers and thus reflect a possible blurred range of these parameter values. The result is a fuzzy pattern classifier, which allows a fuzzy and thus realistic characterization of unknown water samples. The procedure is exemplified using the extinction spectra taken using a UV/Vis spectrometer.

References

  1. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy (OJ L 327 22.12.2000 p. 1). (2006). In P. Sands & P. Galizzi (Eds.), Documents in European Community Environmental Law (pp. 879-969). Cambridge: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511610851.056.
  2. S. Zhuiykov, "Solid-state sensors monitoring parameters of water quality for the next generation of wireless sensor networks", Sens. Actuators B Chem., Bd. 161, Nr. 1, S. 1-20, 2012. DOI: https://doi.org/10.1016/j.snb.2011.10.078
  3. T. P. Lambrou, C. G. Panayiotou and C. C. Anastasiou, "A low-cost system for real time monitoring and assessment of potable water quality at consumer sites", Proc. IEEE Sensors, pp. 1-4, Oct. 2012. http://dx.doi.org/10.1109/ICSENS.2012.6411190.
  4. T. P. Lambrou, C.C. Anastasiou, C. G. Panayiotou und M.M. Polycarpou, "A Low-Cost Sensor Network for Real-Time Monitoring and Contamination Detection in Drinking Water Distribution Systems", in IEEE Sensors Journal, Bd. 14, Nr. 8, S. 2765-2772, Aug. 2014. http://dx.doi.org/10.1109/JSEN.2014.2316414.
  5. L. A. Zadeh, “Fuzzy Sets.” - In: Information and Control 8, 338 – 353, 1965. https://doi.org/10.1016/S0019-9958(65)90241-X
  6. V. Traneva, S. Tranev and D. Mavrov” Interval-Valued Intuitionistic Fuzzy Decision-Making Method using Index Matrices and Application in Outsourcing” In: Proceedings of the 16th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 25, pages 251–254, 2021. http://dx.doi.org/10.15439/2021F77
  7. V. Traneva, S. Tranev, “Two-Stage Intuitionistic Fuzzy Transportation Problem through the Prism of Index Matrices” In: Position and Communication Papers of the 16th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 26, pages 89–96, 2021. http://dx.doi.org/http://dx.doi.org/10.15439/2021F76
  8. S. F. Bocklisch, “Prozessanalyse mit unscharfen Verfahren.” - Verlag Technik, Berlin, 1987. ISBN: 3-341-00211-1.
  9. V. Lohweg, C. Diederichs, D. Müller, “Algorithms for hardware-based pattern recognition.” EURASIP Journal on Applied Signal Processing 2004(12), 1912–1920, 2004. https://doi.org/10.1155/S1110865704404247
  10. U Mönks, V. Lohweg, and H. L. Larsen, “Aggregation Operator Based Fuzzy Pattern Classifier Design, Machine Learning in RealTime Applications (MLRTA 09),” in KI 2009 Workshop, Paderborn | September 15th, 2009, accepted for Publication, 2009.
  11. S. F. Bocklisch, F. Bocklisch, M. Beggiato, J. F. Kremsa “Adaptive fuzzy pattern classification for the online detection of driver lane change intention, Neurocomputing,” Volume 262, 148-158, 2017. http://dx.doi.org/10.1016/j.neucom.2017.02.089.
  12. F. Bocklisch, D. Hausmann, “Multidimensional Fuzzy Pattern Classifier Sequences for Medical Diagnostic Reasoning” In: Applied Soft Computing, Volume 66, 297-310, 2018. https://doi.org/10.1016/j.asoc.2018.02.041