Logo PTI Logo FedCSIS

Communication Papers of the 17th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 32

Treating Dataset Imbalance in Fetal Echocardiography Classification

, , ,

DOI: http://dx.doi.org/10.15439/2022F56

Citation: Communication Papers of the 17th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 32, pages 39 ()

Full text

Abstract. Deep learning has been a trending topic during the last few years, notably in medical imaging that employs neural networks for image manipulation, computer-aided detection of diseases, and many other tasks depending on the clinical practices. One possible application that would benefit from these methods is the fetal cardiac view classification, where these different views are useful to obtain valuable information about the patient's heart development. A trained network could help reduce variance in interpretation and speed up data annotation. Alas, in this context we can face two challenges: datasets may contain a lot of information not relevant to the outcome of the classifier's training, and the view classes may be unbalanced in the sense that certain classes may have much more samples than others. This paper presents a series of attempts to solve these issues and can be used as a practical guide for training viable classifiers in this context.


  1. Luis Perez and Jason Wang. The Effectiveness of Data Augmentation in Image Classification using Deep Learning. https://arxiv.org/abs/1712.04621 [cs], December 2017. arXiv: 1712.04621.
  2. S. Kevin Zhou, Hayit Greenspan, Christos Davatzikos, James S. Duncan, Bram Van Ginneken, Anant Madabhushi, Jerry L. Prince, Daniel Rueckert, and Ronald M. Summers. A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress Highlights, and Future Promises. Proceedings of the IEEE, 109(5):820– 838, May 2021, http://dx.doi.org/10.1109/JPROC.2021.3054390.
  3. Andre Esteva, Katherine Chou, Serena Yeung, Nikhil Naik, Ali Madani, Ali Mottaghi, Yun Liu, Eric Topol, Jeff Dean, and Richard Socher. Deep learning-enabled medical computer vision. npj Digital Medicine, 4(1):5, December 2021, http://dx.doi.org/10.1038/s41746-020-00376-2.
  4. Swati Rai, Jignesh S. Bhatt, and S. K. Patra. Augmented Noise Learning Framework for Enhancing Medical Image Denoising. IEEE Access, 9:117153–117168, 2021,http://dx.doi.org/10.1109/ACCESS.2021.3106707.
  5. Jing Wang, Xiaofeng Liu, Fangyun Wang, Lin Zheng, Fengqiao Gao, Hanwen Zhang, Xin Zhang, Wanqing Xie, and Binbin Wang. Automated interpretation of congenital heart disease from multi-view echocardiograms. Medical Image Analysis, 69:101942, April 2021, http://dx.doi.org/10.1016/j.media.2020.101942.
  6. Amirata Ghorbani, David Ouyang, Abubakar Abid, Bryan He, Jonathan H. Chen, Robert A. Harrington, David H. Liang, Euan A. Ashley, and James Y. Zou. Deep learning interpretation of echocardiograms. npj Digital Medicine, 3(1):10, December 2020, http://dx.doi.org/10.1038/s41746-019-0216-8.
  7. Day, T.G.; Kainz, B.; Hajnal, J.; Razavi, R.; Simpson, J.M. Artificial Intelligence, Fetal Echocardiography, and Congenital Heart Disease. Prenatal Diagnosis 2021, 41, 733–742, http://dx.doi.org/10.1002/pd.5892.
  8. Nurmaini, S.; Rachmatullah, M.N.; Sapitri, A.I.; Darmawahyuni, A.; Tutuko, B.; Firdaus, F.; Partan, R.U.; Bernolian, N. Deep Learning-Based Computer-Aided Fetal Echocardiography: Application to Heart Standard View Segmentation for Congenital Heart Defects Detection. Sensors 2021, 21, 8007, http://dx.doi.org/10.3390/s21238007.
  9. Fiorentino, M.C.; Villani, F.P.; Di Cosmo, M.; Frontoni, E.; Moccia, S. A Review on Deep-Learning Algorithms for Fetal Ultrasound-Image Analysis. https://arxiv.org/abs/2201.12260 [cs, eess] 2022.
  10. Nisselrooij, A.E.L.; Teunissen, A.K.K.; Clur, S.A.; Rozendaal, L.; Pajkrt, E.; Linskens, I.H.; Rammeloo, L.; Lith, J.M.M.; Blom, N.A.; Haak, M.C., “Why are congenital heart defects being missed?”, Ultrasound Obstet Gynecol, vol. 55, nº 6, p. 747–757, jun. 2020, http://dx.doi.org/10.1002/uog.20358.
  11. Dablain, D.; Krawczyk, B.; Chawla, N.V. DeepSMOTE: Fusing Deep Learning and SMOTE for Imbalanced Data. IEEE Transactions on Neural Networks and Learning Systems 2022, 1–15, http://dx.doi.org/10.1109/TNNLS.2021.3136503.
  12. Mullick, S.S.; Datta, S.; Das, S. Generative Adversarial Minority Oversampling. In Proceedings of the Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV); October 2019.
  13. Bellinger, C.; Corizzo, R.; Japkowicz, N. Calibrated Resampling for Imbalanced and Long-Tails in Deep Learning. In Proceedings of the Discovery Science; Soares, C., Torgo, L., Eds.; Springer International Publishing: Cham, 2021; pp. 242–252, http://dx.doi.org/10.1007/978-3-030-88942-5_19.
  14. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV); 2017; pp. 2999–3007, http://dx.doi.org/10.1109/ICCV.2017.324.
  15. Chollet, Francois. 2017. Deep Learning with Python. New York, NY: Manning Publications.
  16. Mingxing Tan and Quoc V. Le. “Efficientnet: Rethinking model scaling for convolutional neural networks”, 2020.
  17. Vaseli, H.; Liao, Z.; Abdi, A.H.; Girgis, H.; Behnami, D.; Luong, C.; Taheri Dezaki, F.; Dhungel, N.; Rohling, R.; Gin, K.; et al. “Designing Lightweight Deep Learning Models for Echocardiography View Classification. In Proceedings of the Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling”; Fei, B., Linte, C.A., Eds.; SPIE: San Diego, United States, March 8 2019; p. 14.
  18. Scikit-image library documentation, https://scikit-image.org/docs/stable/
  19. Long Teng, Zhong, Liang Fu, Qian Ma, Yu Yao, Bing Zhang, Kai Zhu, and Ping Li. Interactive Echocardiography Translation Using Few-Shot GAN Transfer Learning. Computational and Mathematical Methods in Medicine, 2020:1–9, March 2020.
  20. K. R. M. Fernando and C. P. Tsokos, “Dynamically Weighted Balanced Loss: Class Imbalanced Learning and Confidence Calibration of Deep Neural Networks,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 7, pp. 2940–2951, 2022, http://dx.doi.org/10.1109/TNNLS.2020.3047335..
  21. Qiao, S.; Pang, S.; Luo, G.; Pan, S.; Yu, Z.; Chen, T.; Lv, Z. “RLDS: An Explainable Residual Learning Diagnosis System for Fetal Congenital Heart Disease”. Future Generation Computer Systems 2022, 128, 205–218, http://dx.doi.org/10.1016/j.future.2021.10.001.