Logo PTI Logo FedCSIS

Proceedings of the 18th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 35

Measuring Trustworthiness in Neuro-Symbolic Integration

,

DOI: http://dx.doi.org/10.15439/2023F6019

Citation: Proceedings of the 18th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 35, pages 110 ()

Full text

Abstract. Neuro-symbolic integration of symbolic and subsymbolic techniques represents a fast-growing AI trend aimed at mitigating the issues of neural networks in terms of decision processes, reasoning, and interpretability. Several state-of-the-art neuro-symbolic approaches aim at improving performance, most of them focusing on proving their effectiveness in terms of raw predictive performance and/or reasoning capabilities. Meanwhile, few efforts have been devoted to increasing model trustworthiness, interpretability, and efficiency -- mostly due to the complexity of measuring effectively improvements in terms of trustworthiness and interpretability. This is why here we analyse and discuss the need for ad-hoc trustworthiness metrics for neuro-symbolic techniques. We focus on two popular paradigms mixing subsymbolic computation and symbolic knowledge, namely: (i) symbolic knowledge extraction (SKE), aimed at mapping subsymbolic models into human-interpretable knowledge bases; and (ii) symbolic knowledge injection (SKI), aimed at forcing subsymbolic models to adhere to a given symbolic knowledge. We first emphasise the need for assessing neuro-symbolic approaches from a trustworthiness perspective, highlighting the research challenges linked with this evaluation and the need for ad-hoc trust definitions. Then we summarise recent developments in SKE and SKI metrics focusing specifically on several trustworthiness pillars such as interpretability, efficiency, and robustness of neuro-symbolic methods. Finally, we highlight open research opportunities towards reliable and flexible trustworthiness metrics for neuro-symbolic integration.

References

  1. Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object detection with deep learning: A review,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 11, pp. 3212–3232, 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8627998
  2. A. Agiollo, G. Ciatto, and A. Omicini, “Shallow2Deep: Restraining neural networks opacity through neural architecture search,” in Explainable and Transparent AI and Multi-Agent Systems, ser. Lecture Notes in Computer Science, D. Calvaresi, A. Najjar, M. Winikoff, and K. Främling, Eds. Cham: Springer, 2021, vol. 12688, pp. 63–82. [Online]. Available: http://link.springer.com/10.1007/978-3-030-82017-6_5
  3. D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages of deep learning for natural language processing,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 2, pp. 604–624, 2021. [Online]. Available: https://ieeexplore.ieee.org/document/9075398
  4. A. Agiollo, L. C. Siebert, P. K. Murukannaiah, and A. Omicini, “The quarrel of local post-hoc explainers for moral values classification in natural language processing,” in Explainable and Transparent AI and Multi-Agent Systems, ser. Lecture Notes in Computer Science, D. Calvaresi, A. Najjar, A. Omicini, R. Aydoǧan, R. Carli, G. Ciatto, Y. Mualla, and K. Främling, Eds. Springer, 2023, vol. 14127, ch. 6. [Online]. Available: http://link.springer.com/10.1007/978-3-031-40878-6_6
  5. Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,” IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 1, pp. 249–270, 2022. [Online]. Available: https://ieeexplore.ieee.org/document/9039675
  6. A. Agiollo and A. Omicini, “GNN2GNN: Graph neural networks to generate neural networks,” in Uncertainty in Artificial Intelligence, ser. Proceedings of Machine Learning Research, J. Cussens and K. Zhang, Eds., vol. 180. ML Research Press, Aug. 2022. ISSN 2640-3498 pp. 32–42, proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence, UAI 2022, 1-5 August 2022, Eindhoven, The Netherlands. [Online]. Available: https://proceedings.mlr.press/v180/agiollo22a.html
  7. A. Agiollo, E. Bardhi, M. Conti, R. Lazzeretti, E. Losiouk, and A. Omicini, “GNN4IFA: Interest flooding attack detection with graph neural networks,” in 2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P), IEEE Computer Society. Los Alamitos, CA, USA: IEEE Computer Society, Jul. 2023. ISBN 978-1-6654-6512-0 pp. 615–630. [Online]. Available: https://www.computer.org/csdl/proceedings-article/eurosp/2023/651200a615
  8. K. Benidis, S. S. Rangapuram, V. Flunkert, Y. Wang, D. C. Maddix, A. C. Türkmen, J. Gasthaus, M. Bohlke-Schneider, D. Salinas, L. Stella, F. Aubet, L. Callot, and T. Januschowski, “Deep learning for time series forecasting: Tutorial and literature survey,” ACM Computing Surveys, vol. 55, no. 6, pp. 121:1–121:36, 2023. [Online]. Available: https://dl.acm.org/doi/10.1145/3533382
  9. A. Agiollo, M. Conti, P. Kaliyar, T. Lin, and L. Pajola, “DETONAR: Detection of routing attacks in RPL-based IoT,” IEEE Transactions on Network and Service Management, vol. 18, no. 2, pp. 1178 – 1190, 2021. [Online]. Available: https://ieeexplore.ieee.org/document/9415869
  10. J. Zhang and C. Li, “Adversarial examples: Opportunities and challenges,” IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 7, pp. 2578–2593, 2020. [Online]. Available: https://ieeexplore.ieee.org/document/8842604
  11. A. C. Serban, E. Poll, and J. Visser, “Adversarial examples on object recognition: A comprehensive survey,” ACM Computing Surveys, vol. 53, no. 3, pp. 66:1–66:38, 2021. [Online]. Available: https://dl.acm.org/doi/10.1145/3398394
  12. C. Novelli, M. Taddeo, and L. Floridi, “Accountability in artificial intelligence: what it is and how it works,” AI & SOCIETY, pp. 1–12, 2023. [Online]. Available: https://link.springer.com/10.1007/s00146-023-01635-y
  13. M. M. A. de Graaf and B. F. Malle, “How people explain action (and autonomous intelligent systems should too),” in 2017 AAAI Fall Symposia, Arlington, Virginia, USA, November 9-11, 2017. AAAI Press, 2017, pp. 19–26. [Online]. Available: https://aaai.org/ocs/index.php/FSS/FSS17/paper/view/16009
  14. C. Huang and B. Mutlu, “Robot behavior toolkit: generating effective social behaviors for robots,” in International Conference on Human-Robot Interaction, HRI’12, Boston, MA, USA - March 05 - 08, 2012, H. A. Yanco, A. Steinfeld, V. Evers, and O. C. Jenkins, Eds. ACM, 2012, pp. 25–32. [Online]. Available: https://dl.acm.org/doi/10.1145/2157689.2157694
  15. Z. Li, X. Wang, E. Stengel-Eskin, A. Kortylewski, W. Ma, B. V. Durme, and A. L. Yuille, “Super-CLEVR: A virtual benchmark to diagnose domain robustness in visual reasoning,” CoRR, vol. abs/2212.00259, 2022. [Online]. Available: https://arxiv.org/abs/2212.00259
  16. C. W. Wu, A. C. Wu, and J. Strom, “DeepTune: Robust global optimization of electronic circuit design via neuro- symbolic optimization,” in IEEE International Symposium on Circuits and Systems, ISCAS 2021, Daegu, South Korea, May 22-28, 2021. IEEE, 2021, pp. 1–5. [Online]. Available: https://ieeexplore.ieee.org/document/9401488
  17. A. Liu, H. Xu, G. Van den Broeck, and Y. Liang, “Out-of-distribution generalization by neural-symbolic joint training,” in AAAI Conference on Artificial Intelligence, vol. 37, no. 10, 2023, pp. 12 252–12 259. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/26444
  18. M. I. Nye, M. H. Tessler, J. B. Tenenbaum, and B. M. Lake, “Improving coherence and consistency in neural sequence models with dual-system, neuro-symbolic reasoning,” in Advances in Neural Information Processing Systems 34 (NeurIPS 2021), M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W. Vaughan, Eds., 2021, pp. 25 192–25 204. [Online]. Available: https://proceedings.neurips.cc/paper/2021/hash/d3e2e8f631bd9336ed25b8162aef8782-Abstract.html
  19. X. Xie, K. Kersting, and D. Neider, “Neuro-symbolic verification of deep neural networks,” in Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022, L. De Raedt, Ed. ijcai.org, 2022, pp. 3622–3628. [Online]. Available: https://www.ijcai.org/proceedings/2022/503
  20. E. Marconato, G. Bontempo, E. Ficarra, S. Calderara, A. Passerini, and S. Teso, “Neuro symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal,” CoRR, vol. abs/2302.01242, 2023. [Online]. Available: https://arxiv.org/abs/2302.01242
  21. C. Yang and S. Chaudhuri, “Safe neurosymbolic learning with differentiable symbolic execution,” in The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. [Online]. Available: https://openreview.net/forum?id=NYBmJN4MyZ
  22. M. R. Vilamala, T. Xing, H. Taylor, L. Garcia, M. Srivastava, L. M. Kaplan, A. D. Preece, A. Kimmig, and F. Cerutti, “DeepProbCEP: A neuro-symbolic approach for complex event processing in adversarial settings,” Expert Systems with Applications, vol. 215, pp. 119 376:1–26, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0957417422023946
  23. G. Ibarra-Vázquez, G. Olague, M. Chan-Ley, C. Puente, and C. Soubervielle-Montalvo, “Brain programming is immune to adversarial attacks: Towards accurate and robust image classification using symbolic learning,” Swarm and Evolutionary Computation, vol. 71, p. 101059, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2210650222000311
  24. M. Denil and T. P. Trappenberg, “Overlap versus imbalance,” in Advances in Artificial Intelligence, ser. Lecture Notes in Computer Science, A. Farzindar and V. Keselj, Eds., vol. 6085. Springer, 2010, pp. 220–231. [Online]. Available: https://link.springer.com/10.1007/978-3-642-13059-5_22
  25. A. C. Lorena, L. P. F. Garcia, J. Lehmann, M. C. P. de Souto, and T. K. Ho, “How complex is your classification problem?: A survey on measuring classification complexity,” ACM Computing Surveys, vol. 52, no. 5, pp. 107:1–107:34, 2019. [Online]. Available: https://dl.acm.org/doi/10.1145/3347711
  26. C. G. Northcutt, L. Jiang, and I. L. Chuang, “Confident learning: Estimating uncertainty in dataset labels,” Journal of Artificial Intelligence Research, vol. 70, pp. 1373–1411, 2021. [Online]. Available: https://jair.org/index.php/jair/article/view/12125
  27. Y. Lu, Y. Cheung, and Y. Y. Tang, “Bayes imbalance impact index: A measure of class imbalanced data set for classification problem,” IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 9, pp. 3525–3539, 2020. [Online]. Available: https://ieeexplore.ieee.org/document/8890005
  28. D. C. Corrales, J. C. Corrales, and A. Ledezma, “How to address the data quality issues in regression models: A guided process for data cleaning,” Symmetry, vol. 10, no. 4, p. 99, 2018. [Online]. Available: https://www.mdpi.com/2073-8994/10/4/99
  29. M. K. Sarker, L. Zhou, A. Eberhart, and P. Hitzler, “Neuro-symbolic artificial intelligence,” AI Communications, vol. 34, no. 3, pp. 197–209, 2021. [Online]. Available: https://content.iospress.com/articles/ai-communications/aic210084
  30. R. R. Hoffman, S. T. Mueller, G. Klein, and J. Litman, “Metrics for explainable AI: challenges and prospects,” CoRR, vol. abs/1812.04608, 2018. [Online]. Available: http://arxiv.org/abs/1812.04608
  31. A. Nguyen and M. R. Martı́nez, “On quantitative aspects of model interpretability,” CoRR, vol. abs/2007.07584, 2020. [Online]. Available: https://arxiv.org/abs/2007.07584
  32. A. Holzinger, A. M. Carrington, and H. Müller, “Measuring the quality of explanations: The system causability scale (SCS),” KI - Künstliche Intelligenz, vol. 34, no. 2, pp. 193–198, 2020. [Online]. Available: https://link.springer.com/10.1007/s13218-020-00636-z
  33. A. Holzinger, G. Langs, H. Denk, K. Zatloukal, and H. Müller, “Causability and explainability of artificial intelligence in medicine,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 9, no. 4, pp. e1312:1–13, 2019. [Online]. Available: https://wires.onlinelibrary.wiley.com/doi/full/10.1002/widm.1312
  34. H. Lakkaraju, E. Kamar, R. Caruana, and J. Leskovec, “Interpretable & explorable approximations of black box models,” CoRR, vol. abs/1707.01154, 2017. [Online]. Available: http://arxiv.org/abs/1707.01154
  35. F. Chierichetti, R. Kumar, S. Lattanzi, and S. Vassilvitskii, “Matroids, matchings, and fairness,” in 22nd International Conference on Artificial Intelligence and Statistics, AISTATS 2019, ser. Proceedings of Machine Learning Research, K. Chaudhuri and M. Sugiyama, Eds., vol. 89. PMLR, 2019, pp. 2212–2220. [Online]. Available: http://proceedings.mlr.press/v89/chierichetti19a.html
  36. R. Calegari, G. G. Castañé, M. Milano, and B. O’Sullivan, “Assessing and enforcing fairness in the AI lifecycle,” in 32nd International Joint Conference on Artificial Intelligence (IJCAI 2023). Macau, China: IJCAI, August 19–25 2023.
  37. B. Wagner and A. d’Avila Garcez, “Neural-symbolic integration for fairness in AI,” in AAAI-MAKE 2021 – Combining Machine Learning and Knowledge Engineering, ser. CEUR Workshop Proceedings, A. Martin, K. Hinkelmann, H. Fill, A. Gerber, D. Lenat, R. Stolle, and F. van Harmelen, Eds., vol. 2846. CEUR-WS.org, 2021. [Online]. Available: https://ceur-ws.org/Vol-2846/paper5.pdf
  38. S. Badreddine, A. S. d’Avila Garcez, L. Serafini, and M. Spranger, “Logic tensor networks,” Artificial Intelligence, vol. 303, pp. 103 649:1–39, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0004370221002009
  39. X. Gao, J. Zhai, S. Ma, C. Shen, Y. Chen, and Q. Wang, “FairNeuron: improving deep neural network fairness with adversary games on selective neurons,” in 44th International Conference on Software Engineering, ICSE 2022. ACM, 2022, pp. 921–933. [Online]. Available: https://dl.acm.org/doi/10.1145/3510003.3510087
  40. A. Agiollo, A. Rafanelli, and A. Omicini, “Towards quality-of-service metrics for symbolic knowledge injection,” in WOA 2022 – 23rd Workshop “From Objects to Agents”, ser. CEUR Workshop Proceedings, A. Ferrando and V. Mascardi, Eds., vol. 3261. Sun SITE Central Europe, RWTH Aachen University, 2022. ISSN 1613-0073 pp. 30–47. [Online]. Available: http://ceur-ws.org/Vol-3261/paper3.pdf
  41. A. Agiollo, A. Rafanelli, M. Magnini, G. Ciatto, and A. Omicini, “Symbolic knowledge injection meets intelligent agents: QoS metrics and experiments,” Autonomous Agents and Multi-Agent Systems, vol. 37, no. 2, pp. 27:1–27:30, Jun. 2023. [Online]. Available: https://link.springer.com/10.1007/s10458-023-09609-6
  42. J. Mao, C. Gan, P. Kohli, J. B. Tenenbaum, and J. Wu, “The neuro-symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision,” in 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. [Online]. Available: https://openreview.net/forum?id=rJgMlhRctm
  43. Q. Zhang, L. Wang, S. Yu, S. Wang, Y. Wang, J. Jiang, and E. Lim, “NOAHQA: Numerical reasoning with interpretable graph question answering dataset,” in Findings of the Association for Computational Linguistics: EMNLP 2021, M. Moens, X. Huang, L. Specia, and S. W. Yih, Eds. ACL, 2021, pp. 4147–4161. [Online]. Available: https://aclanthology.org/2021.findings-emnlp.350/
  44. B. Škrlj, M. Martinc, N. Lavrač, and S. Pollak, “autoBOT: evolving neuro-symbolic representations for explainable low resource text classification,” Machine Learning, vol. 110, no. 5, pp. 989–1028, 2021. [Online]. Available: https://link.springer.com/article/10.1007/s10994-021-05968-x