Logo PTI Logo FedCSIS

Communication Papers of the 18th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 37

Comparative Study: Defuzzification Functions and Their Effect on the Performance of the OFNbee Optimization Algorithm

, , ,

DOI: http://dx.doi.org/10.15439/2023F5828

Citation: Communication Papers of the 18th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 37, pages 9196 ()

Full text

Abstract. This article explores the pivotal role of defuzzification functions in the operation of the OFNBee algorithm, which employs ordered fuzzy number arithmetic to harness the inherent dynamics within a hive. Defuzzification functions serve the purpose of representing the OFN (Ordered Fuzzy Number) as a real number, while fuzzification functions convert real numbers into OFN representations. By focusing on the defuzzification function, this study investigates its impact on the performance of the OFNBee algorithm. The research demonstrates that tailoring dedicated fuzzification functions for specific optimization problems can yield substantial improvements in algorithmic performance. It is important to note that the overall performance of the algorithm relies on both the fuzzification and defuzzification functions. Consequently, this article provides valuable insights into the effects of the defuzzification function on algorithmic outcomes.

References

  1. D. Ewald, H. Zarzycki, and J. M. Czerniak, “Certain aspects of the ofnbee algorithm operation for different fuzzifiers,” in Uncertainty and Imprecision in Decision Making and Decision Support: New Advances, Challenges, and Perspectives, K. T. Atanassov, V. Atanassova, J. Kacprzyk, A. Kałuszko, M. Krawczak, J. W. Owsiński, S. S. Sotirov, E. Sotirova, E. Szmidt, and S. Zadrożny, Eds. Cham: Springer International Publishing, 2022. ISBN 978-3-030-95929-6 pp. 241–256.
  2. D. Ewald, J. M. Czerniak, and M. Paprzycki, “Ofnbee method applied for solution of problems with multiple extremes,” in Advances and New Developments in Fuzzy Logic and Technology, K. T. Atanassov, V. Atanassova, J. Kacprzyk, A. Kałuszko, M. Krawczak, J. W. Owsiński, S. S. Sotirov, E. Sotirova, E. Szmidt, and S. Zadrożny, Eds. Cham: Springer International Publishing, 2021. ISBN 978-3-030-77716-6 pp. 93–111.
  3. ——, “A New OFNBee Method as an Example of Fuzzy Observance Applied for ABC Optimization,” in Theory and Applications of Ordered Fuzzy Numbers. A Tribute to Professor Witold Kosinski, ser. Studies in Fuzziness and Soft Computing, P. Prokopowicz, J. M. Czerniak, D. Mikolajewski, L. Apiecionek, and D. Śl ̨ezak, Eds. Springer International Publishing, 2017, ch. 12, pp. 207–222.
  4. D. Ewald, J. M. Czerniak, and H. Zarzycki, “OFNBee Method Used for Solving a Set of Benchmarks,” in Advances in Fuzzy Logic and Technology 2017. IWIFSGN 2017, EUSFLAT 2017, ser. Advances in Intelligent Systems and Computing, J. e. a. Kacprzyk, Ed. Springer, 2018, vol. 642, pp. 24–35.
  5. B. Kadda Beghdad, Bey nad Sofiane, B. Farid, and N. Hassina, “Improved virus optimization algorithm for two-objective tasks scheduling in cloud environment,” Communication Papers of the 2019 Federated Conference on Computer Science and Information Systems,ACSIS, vol. 20, pp. 109–117, 2019.
  6. R. Pellegrini, A. Serani, G. Liuzzi, F. Rinaldi, S. Lucidi, and M. Diez, “Hybridization of multi-objective deterministic particle swarm with derivative-free local searches,” Mathematics, vol. 8, no. 4, 2020. http://dx.doi.org/10.3390/math8040546. [Online]. Available: https://www.mdpi.com/2227-7390/8/4/546
  7. L. Zadeh, “Fuzzy sets,” Information and Control, 1965.
  8. ——, “Outline of new approach to the analysis of complex systems and decision process,” IEEE on Systems, „Man and Cybernetics”, vol. SMC-3, pp. 28–44, 1973.
  9. D. Kacprzak, “Przychód i koszt całkowity przedsi ̨ebiorstwa wyrażony przy użyciu skierowanych liczb rozmytych,” Zarządzanie i Finanse, no. 2, pp. 139–149, 2012.
  10. M. Wagenknecht, R. Hampel, and V. Schneider, “Computational aspects of fuzzy arithmetics based on Archimedean t-norms,” Fuzzy Sets and Systems, vol. 123, no. 1, pp. 49–62, 2001. http://dx.doi.org/https://doi.org/10.1016/S0165-0114(00)00096-8. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0165011400000968
  11. M. B. Khan, H. A. Othman, M. G. Voskoglou, L. Abdullah, and A. M. Alzubaidi, “Some certain fuzzy aumann integral inequalities for generalized convexity via fuzzy number valued mappings,” Mathematics, vol. 11, no. 3, 2023. http://dx.doi.org/10.3390/math11030550. [Online]. Available: https://www.mdpi.com/2227-7390/11/3/550
  12. J. Łeski, Systemy neuronowo-rozmyte, WNT, Warszawa, 2008.
  13. W. Kosiński, P. Prokopowicz, and D. Ślęzak, “On algebraic oprerations on fuzzy numbers,” Inteligent Information Processing and Web Mining: proceedings of the International IIS:IIPWM’03 Conference held In Zakopane, pp. 353–362, 2003.
  14. W. Kosiński and U. Markowska-Kaczmar, “On evolutionary approach for determining defuzzyfication operator,” Proceedings of the International Multiconferece on Computer Science and Information Technology, pp. 93–101, 2006.
  15. W. Kosiński and P. Prokopowicz, “Algebra liczb rozmytych,” Matematyka Stosowana, no. 5, pp. 37–63, 2004.
  16. W. Kosinski, “On Defuzzyfication of Ordered Fuzzy Numbers,” in Artificial Intelligence and Soft Computing - ICAISC 2004, ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2004, vol. 3070, pp. 326–331. ISBN 978-3-540-22123-4
  17. W. Kosinski and D. Wilczynska-Sztyma, “Defuzzification and Implication Within Ordered Fuzzy Numbers,” in Fuzzy Systems (FUZZ), 2010 IEEE International Conference on Computational Intelligence. IEEE, 2010, pp. 1–7.
  18. W. Kosinski, W. Piasecki, and D. Wilczynska-Sztyma, “On fuzzy rules and defuzzification functionals for Ordered Fuzzy Numbers,” in Proc. of AI-Meth’2009 Conference, November 2009. AI-METH Series, Gliwice, 2009, pp. 161–178.
  19. D. Wilczyńska-Sztyma and K. Wielki, “Direction of Research into Methods of Defuzzification for Ordered Fuzzy Numbers,” XII International PhD Workshop OWD 2010, 23–26 October 2010, 07 2019.
  20. W. T. Dobrosielski, J. Szczepański, and H. Zarzycki, “A proposal for a method of defuzzification based on the golden ratio—gr,” in Novel Developments in Uncertainty Representation and Processing, K. T. Atanassov, O. Castillo, J. Kacprzyk, M. Krawczak, P. Melin, S. Sotirov, E. Sotirova, E. Szmidt, G. De Tré, and S. Zadrożny, Eds. Cham: Springer International Publishing, 2016, pp. 75–84.
  21. J. M. Czerniak, W. T. Dobrosielski, and I. Filipowicz, “Comparing fuzzy numbers using defuzzificators on ofn shapes,” in Theory and Applications of Ordered Fuzzy Numbers. A Tribute to Professor Witold Kosinski, ser. Studies in Fuzziness and Soft Computing, P. Prokopowicz, J. M. Czerniak, D. Mikolajewski, L. Apiecionek, and D. Ślęzak, Eds. Springer International Publishing, 2017, pp. 99–132.
  22. J. M. Czerniak, Zastosowania skierowanych liczb rozmytych w wybranych algorytmach optymalizacji rojowej. Wydawnictwo Uniwersytetu Kazimierza Wielkiego w Bydgoszczy, 2019.
  23. Z. Abdel-Rahman, “Studies on metaheuristics for continous global optimization problems,” Ph.D. thesis, Kyoto University, Japan, 2004.