Logo PTI Logo FedCSIS

Communication Papers of the 19th Conference on Computer Science and Intelligence Systems (FedCSIS)

Annals of Computer Science and Information Systems, Volume 41

Combining Local and Global Weather Data to Improve Forecast Accuracy for Agriculture

, , , , , , ,

DOI: http://dx.doi.org/10.15439/2024F5990

Citation: Communication Papers of the 19th Conference on Computer Science and Intelligence Systems (FedCSIS), M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 41, pages 7782 ()

Full text

Abstract. Accurate local weather forecasting is vital for farmers to optimize crop yields and manage resources effectively, but existing forecasts often lack the precision required locally. This study explores the potential of combining data from local weather stations with global forecasts and reanalysis data to improve the accuracy of local weather predictions. We propose integrating the HadISD data set, which contains data from 27 stations in the Czech Republic, with the Global Forecast System predictions and ERA5-Land reanalysis data. Our goal is to improve 24-hour weather forecasts using Multilayer Perceptrons, CatBoost, and Long Short-Term Memory neural networks. The findings demonstrate that combining local weather station data with global forecasts and incorporating ERA5-Land reanalysis data improves the accuracy of weather predictions in specific locations. Notably, using deep learning to estimate ERA5-Land data and including this estimation in the final model reduced the forecasting error by 59\%. This advancement holds promise in optimizing agricultural practices and mitigating weather-related risks in the region.

References

  1. R. J. H. Dunn, K. M. Willett, D. E. Parker, and L. Mitchell, “Expanding hadisd: quality-controlled, sub-daily station data from 1931,” Geoscientific Instrumentation, Methods and Data Systems, vol. 5, no. 2, pp. 473–491, 2016. [Online]. Available: https://gi.copernicus.org/articles/5/473/2016/
  2. D. R. J. H., “Hadisd version 3: monthly updates,” Hadley Centre Technical Note, Tech. Rep., 2019.
  3. S. Haykin, Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.
  4. A. V. Dorogush, V. Ershov, and A. Gulin, “Catboost: gradient boosting with categorical features support,” 2018.
  5. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
  6. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation.”
  7. D. Salisbury, K. Mogensen, and G. Balsamo, Use of in situ observations to verify the diurnal cycle of sea surface temperature in ECMWF coupled model forecasts. European Centre for Medium Range Weather Forecasts, 2018.
  8. G. Balsamo, A. Agusti-Parareda, C. Albergel, G. Arduini, A. Beljaars, J. Bidlot, E. Blyth, N. Bousserez, S. Boussetta, A. Brown et al., “Satellite and in situ observations for advancing global earth surface modelling: A review,” Remote Sensing, vol. 10, no. 12, p. 2038, 2018.
  9. M. He, J. Qin, N. Lu, and L. Yao, “Assessment of era5 near-surface air temperatures over global oceans by combining modis sea surface temperature products and in-situ observations,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023.
  10. A. Callens, D. Morichon, S. Abadie, M. Delpey, and B. Liquet, “Using random forest and gradient boosting trees to improve wave forecast at a specific location,” Applied Ocean Research, vol. 104, p. 102339, 2020.
  11. D. Kreuzer, M. Munz, and S. Schlüter, “Short-term temperature forecasts using a convolutional neural network — an application to different weather stations in germany,” Machine Learning with Applications, vol. 2, p. 100007, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2666827020300074
  12. P. Hewage, A. Behera, M. Trovati et al., “Temporal convolutional neural (tcn) network for an effective weather forecasting using time-series data from the local weather station,” Soft Computing, vol. 24, no. 24, pp. 16 453–16 482, 2020. [Online]. Available: https://doi.org/10.1007/s00500-020-04954-0
  13. S. C. Maina, D. Mwigereri, J. Weyn, L. Mackey, and M. Ochieng, “Evaluation of dependency structure for multivariate weather predictors using copulas,” ACM J. Comput. Sustain. Soc., vol. 1, no. 2, dec 2023. [Online]. Available: https://doi.org/10.1145/3616384
  14. K. Bi, L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian, “Accurate medium-range global weather forecasting with 3d neural networks,” Nature, vol. 619, no. 7970, pp. 533–538, 2023.
  15. G. J. Anderson and D. D. Lucas, “Machine learning predictions of a multiresolution climate model ensemble,” Geophysical Research Letters, vol. 45, no. 9, pp. 4273–4280, 2018. [Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL077049
  16. M. Cucchi, G. P. Weedon, A. Amici, N. Bellouin, S. Lange, H. Müller Schmied, H. Hersbach, and C. Buontempo, “Wfde5: bias-adjusted era5 reanalysis data for impact studies,” Earth System Science Data, vol. 12, no. 3, pp. 2097–2120, 2020. [Online]. Available: https://essd.copernicus.org/articles/12/2097/2020/
  17. Y. Sha, D. J. Gagne II, G. West, and R. Stull, “Deep-learning-based gridded downscaling of surface meteorological variables in complex terrain. part ii: Daily precipitation,” Journal of Applied Meteorology and Climatology, vol. 59, no. 12, pp. 2075–2092, 2020.
  18. A. Bramantoro, W. S. Suhaili, and N. Z. Siau, “Precision agriculture through weather forecasting,” in 2022 International Conference on Digital Transformation and Intelligence (ICDI). IEEE, 2022, pp. 203–208.
  19. C. El Hachimi, S. Belaqziz, S. Khabba, and A. Chehbouni, “Towards precision agriculture in morocco: A machine learning approach for recommending crops and forecasting weather,” in 2021 international conference on digital age & technological advances for sustainable development (ICDATA). IEEE, 2021, pp. 88–95.
  20. National Centers for Environmental Prediction, National Weather Service, NOAA, U.S. Department of Commerce, “Ncep gfs 0.25 degree global forecast grids historical archive,” Boulder CO, 2015.
  21. J. Muñoz-Sabater, E. Dutra, A. Agustí-Panareda, C. Albergel, G. Arduini, G. Balsamo, S. Boussetta, M. Choulga, S. Harrigan, H. Hersbach et al., “Era5-land: A state-of-the-art global reanalysis dataset for land applications,” Earth system science data, vol. 13, no. 9, pp. 4349–4383, 2021.
  22. S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” Advances in neural information processing systems, vol. 30, 2017.
  23. M.-S. J., “Era5-land hourly data from 1950 to present,” Copernicus Climate Change Service (C3S) Climate Data Store (CDS), Tech. Rep., 2019.
  24. S. M. Lundberg and S. Lee, “A unified approach to interpreting model predictions,” CoRR, vol. abs/1705.07874, 2017. [Online]. Available: http://arxiv.org/abs/1705.07874