Enhancing MRI Imaging Efficiency: A Hybrid Under-Sampling Strategy for k-Space Data Acquisition
Duc-Tan Tran, Quang Huy Pham, Thi Phuong Hanh Nguyen, Trinh Thi Thu Huong
DOI: http://dx.doi.org/10.15439/2024R58
Citation: Proceedings of the 2024 Ninth International Conference on Research in Intelligent Computing in Engineering, Vijender Kumar Solanki, Tran Duc Tan, Pradeep Kumar, Manuel Cardona (eds). ACSIS, Vol. 42, pages 147–150 (2024)
Abstract. Compressed Sensing (CS) offers a promising solution to reduce MRI acquisition times, addressing challenges of prolonged scans and patient discomfort. This paper presents a new method for compressing and reconstructing MRI images using k-space gradients. A hybrid under-sampling approach allocates 80\% of measurements to random sampling and 20\% to deterministic sampling near the k-space center. Additionally, it explores the impact of reducing kx samples by 15\%, 25\%, and 50\% on image quality. Reconstruction uses a nonlinear conjugate gradient method, with image quality assessed via a similarity index Q. Results show the proposed CS approach effectively compresses MRI data while preserving essential image quality, optimizing protocols and reducing scan times.
References
- D. J. Larkman, R. G. Nunes, Parallel magnetic resonance imaging, Phys. Med. Biol., 52 (2007), R15−R55.
- M. A. Griswold, P. M. Jakob, R. M. Heidemann, M. Nittka, V. Jellus, J. Wang, et al., Generalized autocalibrating partially parallel acquisitions (GRAPPA), Magnet. Reson. Med., 47 (2002), 1202−1210.
- P. Kazmierczak, D. Theisen, K. Thierfelder, W. Sommer, M. Reiser, M. Notohamiprodjo, et al., Improved detection of hypervascular liver lesions with CAIPIRINHA-Dixon-TWIST-volume-interpolated breath-hold examination, Invest. Radiol., 50 (2014), 153−160.
- J. H. Yoon, J. M. Lee, M. H. Yu, E. J. Kim, J. K. Han, Triple arterial phase MR imaging with gadoxetic acid using a combination of contrast enhanced time robust angiography, keyhole, and viewsharing techniques and two-dimensional parallel imaging in comparison with conventional single arterial phase, Korean .J. Radiol., 4 (2016), 522−532.
- T. A. Hope, M. Saranathan, I. Petkovska, B. A. Hargreaves, R. J. Herfkens, S. S. Vasanawala, Improvement of gadoxetate arterial phase capture with a high spatio-temporal resolution multiphase three-dimensional SPGR-Dixon sequence, J. Magn. Reson. Imaging, 38 (2013), 938−945.
- D. L. Donoho, Compressed sensing, IEEE Trans. Inf. Theory, 52 (2006), 1289−1306.
- F. Ong, R. Heckel, K. Ramchandran, A Fast and Robust Paradigm for Fourier Compressed Sensing Based on Coded Sampling, in ICASSP 2019−2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019.
- Y. Li, R. Yang, Z. Zhang, Y. Wu, Chaotic-like k-space trajectory for compressed sensing MRI, J. Med. Imaging. Health. Inform., 5 (2015), 415−421.
- T. Tran Duc, P. Dinh Van, C. Truong Minh, L. T. Nguyen, Accelerated Parallel Magnetic Resonance Imaging with Multi-Channel Chaotic Compressed Ssensing, in The 2010 International Conference on Advanced Technologies for Communications, 2010.
- M. Lustig, D. Donoho, J. M. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging, Magnet. Reson. Med., 58 (2007), 1182−1195.
- G. Wang, Y. Bresler, V. Ntziachristos, Guest editorial compressive sensing for biomedical imaging, IEEE Trans. Med. Imaging, 30 (2011), 1013−1016.
- J. A. Tropp, A. C. Gilbert, Signal recovery from random measurements Vvia orthogonal matching pursuit, IEEE Trans. Inf. Theory, 53 (2007), 4655−4666.
- E. J. Candes, J. Romberg, T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory, 52 (2006), 489−509.
- K. H. Jin, D. Lee, J. C. Ye, A general Fframework for compressed sensing and parallel MRI Uusing a filter based low-rank hankel matrix, IEEE Trans. Comput. Imaging, 2 (2016), 480−495.
- G. Yang, S. Yu, H. Dong, G. Slabaugh, P. L. Dragotti, X. Ye, et al., DAGAN: Deep De-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction, IEEE Trans. Med. Imaging, 37 (2018), 1310−1321.
- K. Thurnhofer-Hemsi, E. López-Rubio, E. Domínguez, R. M. Luque-Baena, N. Roé-Vellvé, Deep learning-based super-resolution of 3D magnetic resonance images by regularly spaced shifting, Neurocomputing, 398 (2020), 314−327.
- Tran, A. Q., Nguyen, T. A., Duong, V. T., Tran, Q. H., Tran, D. N., & Tran, D. T. (2020). MRI Simulation-based evaluation of an efficient under-sampling approach. Mathematical Biosciences and Engineering, 17(4), 4048-4063.
- Tran, A. Q., Nguyen, T. A., Doan, P. T., Tran, D. N., & Tran, D. T. (2021). Parallel magnetic resonance imaging acceleration with a hybrid sensing approach. Mathematical Biosciences and Engineering, 18(3), 2288-2302.