Logo PTI Logo FedCSIS

Proceedings of the 20th Conference on Computer Science and Intelligence Systems (FedCSIS)

Annals of Computer Science and Information Systems, Volume 43

AI Software Security for Smart Environment in a Dynamically Changing Knowledge Management Strategy

, , , ,

DOI: http://dx.doi.org/10.15439/2025F0792

Citation: Proceedings of the 20th Conference on Computer Science and Intelligence Systems (FedCSIS), M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 43, pages 771776 ()

Full text

Abstract. The theory of smart environments assumes a diversity of human-supporting solutions that interact with each other and are oriented towards applying artificial intelligence. Concepts such as digital twin, software agent, and machine learning can aid the creation of smart environments by supporting the design and simulation of device behaviors. This article aimed to conduct research addressing the following question: How does multi-agent software impact (1) smart grid security, (2) smart grid adaptability, and (3) smart grid user-friendliness? The paper's research findings discussed the AI-based knowledge management model in the context of the GRAI framework usage, which stands for Generative, Receptive Artificial Intelligence, and presents a proposal of an updated model that takes into account recent developments regarding GenAI and its consequences for KM. Based on the conducted research, an algorithm for collecting information from devices was proposed and used in a simulation based on the Isolation Forest algorithm.

References

  1. Q. Tang, F. R. Yu, R. Xie, A. Boukerche, T. Huang and Y. Liu, "Internet of Intelligence: A Survey on the Enabling Technologies, Applications, and Challenges" in IEEE Communications Surveys & Tutorials, vol. 24, no. 3, pp. 1394-1434, third quarter 2022, https://dx.doi.org/10.1109/COMST.2022.3175453
  2. A. Okino Otuoze, A. Masood, R. Larik “Smart grids security challenges: Classification by sources of threats”. Journal of Electrical Systems and Information Technology 5(2018) 468-482, https://doi.org/10.1016/j.jesit.2018.01.001
  3. X. Fang, S. Misra, G. Xue and D. Yang, "Smart Grid — The New and Improved Power Grid: A Survey," in IEEE Communications Surveys & Tutorials, vol. 14, no. 4, pp. 944-980, Fourth Quarter 2012, https://dx.doi.org/10.1109/SURV.2011.101911.00087
  4. O. Ellabban, H. Abu-Rub, F. Blaabjerg “Renewable energy resources: Current status, future prospects and their enabling technology”, Renewable and Sustainable Energy Reviews, vol.39, 748-764, 2014, 10.1016/j.rser.2014.07.113.
  5. J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang and W. Zhao, "A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications," in IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1125-1142, Oct. 2017, https://dx.doi.org/10.1109/JIOT.2017.2683200
  6. Y. Yan, Y. Qian, H. Sharif and D. Tipper, "A Survey on Smart Grid Communication Infrastructures: Motivations, Requirements and Challenges," in IEEE Communications Surveys & Tutorials, vol. 15, no. 1, pp. 5-20, First Quarter 2013, https://dx.doi.org/10.1109/SURV.2012.021312.00034
  7. D. L. Poole, A. K. Mackworth “Artificial intelligence: foundations of computational agents”, Second ed., USA, Cambridge University Press; 2017.
  8. M. L Tuballa, M. L Abundo “A review of the development of Smart Grid technologies”, Renewable and Sustainable Energy Reviews, Volume 59, 2016, pp. 710-725, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2016.01.011.
  9. J. Kim and Y. Dvorkin, "A P2P-Dominant Distribution System Architecture," in IEEE Transactions on Power Systems, vol. 35, no. 4, pp. 2716-2725, July 2020, https://dx.doi.org/10.1109/TPWRS.2019.2961330.
  10. F. Moret and P. Pinson, "Energy Collectives: A Community and Fairness Based Approach to Future Electricity Markets," in IEEE Transactions on Power Systems, vol. 34, no. 5, pp. 3994-4004, Sept. 2019, https://dx.doi.org/10.1109/TPWRS.2018.2808961.
  11. T. Morstyn and M. D. McCulloch, "Multiclass Energy Management for Peer-to-Peer Energy Trading Driven by Prosumer Preferences," in IEEE Transactions on Power Systems, vol. 34, no. 5, pp. 4005-4014, Sept. 2019, https://dx.doi.org/10.1109/TPWRS.2018.2834472.
  12. P. Olivella-Rosell, G. Viñals-Canal, A. Sumper, R. Villafafila-Robles, B. A. Bremdal, I. Ilieva, S. Ø. Ottesen “Day-ahead micro-market design for distributed energy resources” In: 2016 IEEE International Energy Conference. 2016, p. 1–6. http://dx.doi.org/10.1109/ENERGYCON.2016.7513961.
  13. W. Tushar, B. Chai, C. Yuen, S. Huang, D. B. Smith, H. V. Poor, Z. Yang "Energy Storage Sharing in Smart Grid: A Modified Auction-Based Approach," in IEEE Transactions on Smart Grid, vol. 7, no. 3, pp. 1462-1475, May 2016, https://dx.doi.org/10.1109/TSG.2015.251226.
  14. R. Verschae, T. Kato, T. Matsuyama “Energy management in prosumer communities: A coordinated approach”, Energies 2016;9(7). http://dx.doi.org/10.3390/en9070562, URL https://www.mdpi.com/1996-1073/9/7/562.
  15. A. Billard, S. Mirrazavi, N. Figueroa “Learning for Adaptive and Reactive Robot Control. A Dynamical Systems Approach”, MIT Press, 2022.
  16. R. Jing, MN. Xie, FX. Wang, LX Chen. “Fair P2P energy trading between residential and commercial multi-energy systems enabling integrated demand-side management”, Appl Energy 2020;262:114551.
  17. S. Nolfi “Behavioral and cognitive robotics: An adaptive perspective”. Roma, Italy: Institute of Cognitive Sciences and Technologies, National Research Council CNR-ISTC (2021). 
  18. T. Kisielewicz, S. Stanek S., M. Żytniewski “A Multi-Agent Adaptive Architecture for Smart-Grid-Intrusion Detection and Prevention”, Energis, 2022 15, 4726. https://doi.org/10.3390/en15134726.
  19. C. P. Nguyen, A. J. Flueck “Agent based restoration with distributed energy storage support in smart grids”, IEEE Trans. Smart Grid, vol. 3, no. 2, pp. 1029–1038, Jun. (2012).
  20. P. Vytelingum, T. D. Voice, S. D. Ramchurn, A. Rogers, N. R. Jennings “Agent-based micro-storage management for the smart grid” in Proc. 9th Int. Conf. Auto. Agents Multiagent Syst., 2010, pp. 39–46.
  21. G. H. Merabet et al., Applications of multi-agent systems in smart grids: A survey, in Proc. Int. Conf. Multimedia Comput. Syst. (ICMCS), pp. 1088–1094, (2024)
  22. L. Hernández-Callejo et al. A Multi-Agent-System Architecture for Smart Grid Management and Forecasting of Energy Demand in Virtual Power Plants, January 2013, IEEE Communications Magazine 51(1), DOI: 10.1109/MCOM.2013.6400446.
  23. J. R. Vázquez-Canteli, Z. Nagy “Reinforcement learning for demand response: A review of algorithms and modeling techniques", Applied Energy, Volume 235, 2019, pp. 1072-1089, ISSN 0306-2619, https://doi.org/10.1016/j.apenergy.2018.11.002.
  24. I. Blecic, A. Cecchini, G.A. Trunfio “A Software Infrastructure for Multi-agent Geosimulation Applications” In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2008. ICCSA 2008. Lecture Notes in Computer Science, vol 5072, 2008, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69839-5_28.
  25. K. Böhm, S. Durst “Knowledge management in the age of generative artificial intelligence – from SECI to GRAI”, VINE Journal of Information and Knowledge Management Systems Emerald Publishing Limited 2059-5891, 2025, DOI 10.1108/VJIKMS-10-2024-0357.
  26. H. Yu, A. Gan, K. Zhang, S. Tong, Q. Liu, and Z. Liu “Evaluation of retrieval-augmented generation: a survey”, arXiv, 2024, https://dx.doi.org/10.48550/arXiv.2405.07437.
  27. P. Zhao, H. Zhang, Q. Yu, Z. Wang, Y. Geng, F. Fu, L. Yang, W. Zhang, J. Jiang, and B. Cui “Retrieval-augmented generation for AI-generated content: a survey”, arXiv, 2024,. https://dx.doi.org/10.48550/arXiv.2402.19473.
  28. W. Ben, H. Ines “Preventive mental health care: A complex systems framework environments”, Cognitive Systems Research, 84, 101199, 2024, http://doi.org/10.1016/j.cogsys.2023.101199
  29. Y. Mo, T. H. -J. Kim, K. Brancik, D. Dickinson, H. Lee, A. Perrig, B. Sinopoli “Cyber–Physical Security of a Smart Grid Infrastructure”, in Proceedings of the IEEE, vol. 100, no. 1, pp. 195-209, Jan. 2012, https://dx.doi.org/10.1109/JPROC.2011.2161428.
  30. N. Z. Aitzhan, D. Svetinovic “Security and Privacy in Decentralized Energy Trading Through Multi-Signatures, Blockchain and Anonymous Messaging Streams” in IEEE Transactions on Dependable and Secure Computing, vol. 15, no. 5, pp. 840-852, 1 Sept.-Oct. 2018, https://dx.doi.org/10.1109/TDSC.2016.2616861.
  31. J. Appiah-Kubi, C. C. Liu “Decentralized Intrusion Prevention (DIP) Against Co-Ordinated Cyberattacks on Distribution Automation Systems”, in IEEE Open Access Journal of Power and Energy, vol. 7, pp. 389-402, 2020, https://dx.doi.org/10.1109/OAJPE.2020.3029805.
  32. S. Deilami, A. S. Masoum, P. S. Moses and M. A. S. Masoum, Real-Time Coordination of Plug-In Electric Vehicle Charging in Smart Grids to Minimize Power Losses and Improve Voltage Profile, in IEEE Transactions on Smart Grid, vol. 2, no. 3, pp. 456-467, Sept. 2011, https://dx.doi.org/10.1109/TSG.2011.2159816.
  33. Y. Mo, T. H. -J. Kim, K. Brancik, D. Dickinson, H. Lee, A. Perrig, B. Sinopoli “Cyber–Physical Security of a Smart Grid Infrastructure”, in Proceedings of the IEEE, vol. 100, no. 1, pp. 195-209, Jan. 2012, https://dx.doi.org/10.1109/JPROC.2011.2161428.
  34. S. Sridhar, A. Hahn, M. Govindarasu “Cyber–Physical System Security for the Electric Power Grid”. in Proceedings of the IEEE, vol. 100, no. 1, pp. 210-224, Jan. 2012, https://dx.doi.org/10.1109/JPROC.2011.2165269.
  35. W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, X. Yang "A Survey on the Edge Computing for the Internet of Things," in IEEE Access, vol. 6, pp. 6900-6919, 2018, https://dx.doi.org/10.1109/ACCESS.2017.2778504.
  36. B. Karaduman, B. T. Tezel, G. Kardas, M. Challenger “DSML4JaCaMo: A Modelling tool for Multi-agent Programming with JaCaMo”, Proceedings of the 19th Conference on Computer Science and Intelligence Systems (FedCSIS), M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 39, pages 637–642 (2024)
  37. V. Carchiolo, G. Catalano, M. Malgeri, C. Pellegrino, G. Platania, N. Trapani “BPM Tools for Asset Management in Renewable Energy Power Plants”, Proceedings of the 2019 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 18, pages 645–649 (2019)
  38. ISO/IEC DIS 27019, https://www.iso.org/standard/85056.html
  39. ISO/IEC 30101:2014, https://www.iso.org/standard/53221.html
  40. GitHub, https://github.com/Anakainosis/IotDTBPMN2Jade
  41. F. Aloul, A.R. Al-Ali, R. Al-Dalky, M. Al-Mardini, El-Hajj, W. Smart Grid Security: Threats, Vulnerabilities and Solutions. International Journal of Smart Grid and Clean Energy. 1. 1-6. 10.12720/sgce.1.1.1-6. (2012).