Logo PTI Logo FedCSIS

Proceedings of the 20th Conference on Computer Science and Intelligence Systems (FedCSIS)

Annals of Computer Science and Information Systems, Volume 43

An Application of Tensors in the Stochastic Reaction Diffusion Master Equation

,

DOI: http://dx.doi.org/10.15439/2025F1136

Citation: Proceedings of the 20th Conference on Computer Science and Intelligence Systems (FedCSIS), M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 43, pages 587594 ()

Full text

Abstract. Various scientific fields are seeking to exploit tensors, which are multi-dimensional arrays that expand on the concept of matrices. Here, we consider an application arising from complex biological systems where the data can be processed and analyzed using tensors. Our modeling framework is the reaction-diffusion master equation (RDME) used to describe the dynamics of biological systems involving both reaction and diffusion processes. It is already notoriously hard to solve the more familiar chemical master equation (CME) that only involves reaction processes. Solving the RDME is even harder because its state space is considerably larger compared to that of the CME, and this further motivates the utilization of tensors. Our study is an illustrative example of how tensor techniques can be used to make predictions on the dynamics of a metapopulation model based on its RDME formulation.

References

  1. M. A. O. Vasilescu and D. Terzopoulos, “Multilinear analysis of image ensembles: Tensorfaces,” in Computer Vision—ECCV 2002: 7th European Conference on Computer Vision Copenhagen, Denmark, May 28–31, 2002 Proceedings, Part I 7. Springer, 2002, pp. 447–460, https://dx.doi.org/10.1007/3-540-47969-4_30.
  2. E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Parcube: Sparse parallelizable tensor decompositions,” in Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2012, Bristol, UK, September 24-28, 2012. Proceedings, Part I 23. Springer, 2012, pp. 521–536, https://dx.doi.org/10.1007/978-3-642-33460-3_39.
  3. F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum of products,” Journal of Mathematics and Physics, vol. 6, no. 1-4, pp. 164–189, 1927. https://dx.doi.org/10.1002/sapm192761164
  4. L. Grasedyck, D. Kressner, and C. Tobler, “A literature survey of low-rank tensor approximation techniques,” GAMM-Mitteilungen, vol. 36, no. 1, pp. 53–78, 2013. https://dx.doi.org/10.1002/gamm.201310004
  5. W. Hackbusch, Tensor spaces and numerical tensor calculus. Springer, 2012, vol. 42, https://dx.doi.org/10.1007/978-3-030-35554-8.
  6. J. Grabek and B. Cyganek, “An impact of tensor-based data compression methods on deep neural network accuracy,” in Position and Communication Papers of the 16th Conference on Computer Science and Intelligence Systems, ser. Annals of Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, and D. Ślęzak, Eds., vol. 26. PTI, 2021. https://dx.doi.org/10.15439/2021F127 p. 3–11. [Online]. Available: http://dx.doi.org/10.15439/2021F127
  7. D. T. Gillespie, “A rigorous derivation of the chemical master equation,” Physica A: Statistical Mechanics and its Applications, vol. 188, no. 1-3, pp. 404–425, 1992. https://dx.doi.org/10.1016/0378-4371(92)90283-V
  8. D. T. Gillespie, “Exact stochastic simulation of coupled chemical reactions,” The journal of physical chemistry, vol. 81, no. 25, pp. 2340–2361, 1977. https://dx.doi.org/10.1021/j100540a008
  9. B. Munsky and M. Khammash, “The finite state projection algorithm for the solution of the chemical master equation,” The Journal of Chemical Physics, vol. 124, no. 4, p. 044104, 2006. https://dx.doi.org/10.1063/1.2145882
  10. J. S. van Zon, M. J. Morelli, S. Tǎnase-Nicola, and P. R. ten Wolde, “Diffusion of transcription factors can drastically enhance the noise in gene expression,” Biophysical Journal, vol. 91, no. 12, pp. 4350–4367, 2006. https://dx.doi.org/10.1529/biophysj.106.086157
  11. N. Pavin, H. Č. Paljetak, and V. Krstić, “Min-protein oscillations in Escherichia coli with spontaneous formation of two-stranded filaments in a three-dimensional stochastic reaction-diffusion model,” Physical Review E, vol. 73, no. 2, p. 021904, 2006. https://dx.doi.org/10.1103/PhysRevE.73.021904
  12. M. Smoluchowski, “Mathematical theory of the kinetics of the coagulation of colloidal solutions,” Z. Phys. Chem., vol. 92, pp. 129–168, 1917.
  13. C. Gardiner, K. McNeil, D. Walls, and I. Matheson, “Correlations in stochastic theories of chemical reactions,” Journal of Statistical Physics, vol. 14, pp. 307–331, 1976. https://dx.doi.org/10.1007/BF01030197
  14. A. B. Stundzia and C. J. Lumsden, “Stochastic simulation of coupled reaction–diffusion processes,” Journal of Computational Physics, vol. 127, no. 1, pp. 196–207, 1996. https://dx.doi.org/10.1006/jcph.1996.0168
  15. M. M. Rahman and R. B. Sidje, “A study of a metapopulation model using the stochastic reaction diffusion master equation,” in Southwest Data Science Conference. Springer, 2023, pp. 242–253, https://dx.doi.org/10.1007/978-3-031-61816-1_17.
  16. M. M. Rahman, K. Cook, and R. B. Sidje, “Parallel implementation of the stochastic reaction diffusion master equation,” in Proceedings of the 17th International Conference on Bioinformatics and Computational Biology, T. Aldwairi, H. Al-Mubaid, and O. Eulenstein, Eds. Cham: Springer, 2025. ISBN 978-3-031-94039-2 https://dx.doi.org/10.1007/978-3-031-94039-2_10
  17. M. A. Gibson and J. Bruck, “Efficient exact stochastic simulation of chemical systems with many species and many channels,” The journal of physical chemistry A, vol. 104, no. 9, pp. 1876–1889, 2000. https://dx.doi.org/10.1021/jp993732q
  18. J. Hattne, D. Fange, and J. Elf, “Stochastic reaction-diffusion simulation with MesoRD,” Bioinformatics, vol. 21, no. 12, pp. 2923–2924, 2005. https://dx.doi.org/10.1093/bioinformatics/bti431
  19. J. Elf and M. Ehrenberg, “Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases,” Systems biology, vol. 1, no. 2, pp. 230–236, 2004. https://dx.doi.org/10.1049/sb:20045021
  20. M. M. Rahman, “A numerical study of the stochastic reaction-diffusion master equation using tensors and parallelism with application to biological models,” Ph.D. dissertation, The University of Alabama, 2025.
  21. L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear singular value decomposition,” SIAM Journal on Matrix Analysis and Applications, vol. 21, no. 4, pp. 1253–1278, 2000. https://dx.doi.org/10.1137/S089547989630569
  22. T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM Review, vol. 51, no. 3, pp. 455–500, 2009. https://dx.doi.org/10.1137/07070111X
  23. T. G. Kolda, “Multilinear operators for higher-order decompositions,” Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), Tech. Rep., 2006, https://dx.doi.org/10.2172/923081.
  24. I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific Computing, vol. 33, no. 5, pp. 2295–2317, 2011. https://dx.doi.org/10.1137/090752286
  25. T. Dinh and R. B. Sidje, “An adaptive solution to the chemical master equation using quantized tensor trains with sliding windows,” Physical Biology, vol. 17, no. 6, p. 065014, 2020. https://dx.doi.org/10.1088/1478-3975/aba1d2
  26. H. D. Vo and R. B. Sidje, “An adaptive solution to the chemical master equation using tensors,” The Journal of Chemical Physics, vol. 147, no. 4, 2017. https://dx.doi.org/10.1063/1.4994917
  27. K. Burrage, M. Hegland, S. Macnamara, and R. B. Sidje, “A Krylov-based finite state projection algorithm for solving the chemical master equation arising in the discrete modelling of biological systems,” in Proc. of The AA Markov 150th Anniversary Meeting, no. 21-37, 2006.
  28. M. Hegland and J. Garcke, “On the numerical solution of the chemical master equation with sums of rank one tensors,” ANZIAM Journal, vol. 52, pp. C628–C643, 2010. https://dx.doi.org/10.21914/anziamj.v52i0.3895
  29. V. Kazeev, M. Khammash, M. Nip, and C. Schwab, “Direct solution of the chemical master equation using quantized tensor trains,” PLoS computational biology, vol. 10, no. 3, p. e1003359, 2014. https://dx.doi.org/10.1371/journal.pcbi.1003359
  30. V. Colizza, R. Pastor-Satorras, and A. Vespignani, “Reaction–diffusion processes and metapopulation models in heterogeneous networks,” Nature Physics, vol. 3, no. 4, pp. 276–282, 2007. https://dx.doi.org/10.1038/nphys560
  31. R. Anderson, R. May, and B. Anderson, Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, 1992, https://dx.doi.org/10.1093/oso/9780198545996.001.0001.
  32. S. Smith and R. Grima, “Breakdown of the reaction-diffusion master equation with nonelementary rates,” Phys. Rev. E, vol. 93, p. 052135, May 2016. https://dx.doi.org/10.1103/PhysRevE.93.052135. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.93.052135