Logo PTI Logo FedCSIS

Proceedings of the 20th Conference on Computer Science and Intelligence Systems (FedCSIS)

Annals of Computer Science and Information Systems, Volume 43

Towards a Framework for Systematic API Migrations

,

DOI: http://dx.doi.org/10.15439/2025F1225

Citation: Proceedings of the 20th Conference on Computer Science and Intelligence Systems (FedCSIS), M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 43, pages 155163 ()

Full text

Abstract. This work presents a framework for systematic Application Programming Interface (API) migrations that provides guidance for both manual and automated migration processes. The approach starts by matching methods from the old API version with those of the new version, followed by comparative syntactic and semantic analyses to produce migration steps. As a proof of concept, we implement the most challenging parts using structured, parameterized Artificial Intelligence (AI) queries, which also serve as a basis for evaluation. Our results demonstrate the feasibility and usefulness of this approach. Future work will focus on completing the full migration process while reducing reliance on AI due to its current limitations in reasoning. We also plan to evaluate the framework on real-world APIs to assess its effectiveness and general applicability.

References

  1. L. Rainie and B. Wellman, “The Internet in Daily Life: The Turn to Networked Individualism,” in Society and the Internet. Oxford University Press, Jul. 2019, pp. 27–42. ISBN 978-0-19-884349-8 978-0-19-187932-6. [Online]. Available: https://academic.oup.com/book/35088/chapter/299127482
  2. R. Kurzweil, “The Law of Accelerating Returns,” in Alan Turing: Life and Legacy of a Great Thinker, C. Teuscher, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 381–416. ISBN 978-3-642-05744-1 978-3-662-05642-4. [Online]. Available: http://link.springer.com/10.1007/978-3-662-05642-4_16
  3. M. Lamothe, Y.-G. Guéhéneuc, and W. Shang, “A Systematic Review of API Evolution Literature,” ACM Computing Surveys, vol. 54, no. 8, pp. 1–36, Nov. 2022. https://dx.doi.org/10.1145/3470133. [Online]. Available: https://dl.acm.org/doi/10.1145/3470133
  4. Hevner, March, Park, and Ram, “Design Science in Information Systems Research,” MIS Quarterly, vol. 28, no. 1, p. 75, 2004. doi: 10.2307/25148625. [Online]. Available: https://www.jstor.org/stable/10.2307/25148625
  5. A. Hevner, “A Three Cycle View of Design Science Research,” Scandinavian Journal of Information Systems, vol. 19, Jan. 2007.
  6. “OpenAPI Specification v3.1.1,” accessed: 2025-06-26. [Online]. Available: https://spec.openapis.org/oas/latest.html
  7. “API Blueprint Specification | API Blueprint,” accessed: 2025-06-26. [Online]. Available: https://apiblueprint.org/documentation/specification.html
  8. R. Pergl and N. Jísa, “Semantic Analysis of API Blueprint and OpenAPI Specification,” in Czech Technical University Prague, A. Rocha, H. Adeli, G. Dzemyda, F. Moreira, and A. Poniszewska-Maranda, Eds., vol. 989, 2024. https://dx.doi.org/10.1007/978-3-031-60227-6_15. ISBN 2367-3370 pp. 172–181.
  9. N. Jíša and R. Pergl, “Towards Evolvable APIs through Ontological Analysis,” in Annals of Computer Science and Information Systems, vol. 41. PTI, Nov. 2024. https://dx.doi.org/10.15439/2024f3164. ISSN 2300-5963 pp. 61–68.
  10. C. Wohlin, “Guidelines for snowballing in systematic literature studies and a replication in software engineering,” in Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering, ser. Ease ’14. London, England, United Kingdom and New York, NY, USA: Association for Computing Machinery, 2014. https://dx.doi.org/10.1145/2601248.2601268. ISBN 978-1-4503-2476-2
  11. T. Mens, “A state-of-the-art survey on software merging,” IEEE Transactions on Software Engineering, vol. 28, no. 5, pp. 449–462, May 2002. https://dx.doi.org/10.1109/TSE.2002.1000449. [Online]. Available: http://ieeexplore.ieee.org/document/1000449/
  12. “Git,” accessed: 2025-06-28. [Online]. Available: https://git-scm.com/
  13. B. Dagenais and M. P. Robillard, “SemDiff: Analysis and recommendation support for API evolution,” in 2009 IEEE 31st International Conference on Software Engineering. Vancouver, BC, Canada: IEEE, 2009. https://dx.doi.org/10.1109/ICSE.2009.5070565. ISBN 978-1-4244-3453-4 pp. 599–602. [Online]. Available: http://ieeexplore.ieee.org/document/5070565/
  14. A. Brito, L. Xavier, A. Hora, and M. T. Valente, “APIDiff: Detecting API breaking changes,” in 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER). Campobasso: IEEE, Mar. 2018. https://dx.doi.org/10.1109/SANER.2018.8330249. ISBN 978-1-5386-4969-5 pp. 507–511. [Online]. Available: http://ieeexplore.ieee.org/document/8330249/
  15. N. Deshpande, M. W. Mkaouer, A. Ouni, and N. Sharma, “Third-party software library migration at the method-level using multi-objective evolutionary search,” Swarm and Evolutionary Computation, vol. 84, p. 101444, Feb. 2024. https://dx.doi.org/10.1016/j.swevo.2023.101444. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S221065022300216X
  16. D. Ramos, H. Mitchell, I. Lynce, V. Manquinho, R. Martins, and C. L. Goues, “MELT: Mining Effective Lightweight Transformations from Pull Requests,” in 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE). Luxembourg, Luxembourg: IEEE, Sep. 2023. https://dx.doi.org/10.1109/ASE56229.2023.00117. ISBN 979-8-3503-2996-4 pp. 1516–1528. [Online]. Available: https://ieeexplore.ieee.org/document/10298355/
  17. X. Gao, A. Radhakrishna, G. Soares, R. Shariffdeen, S. Gulwani, and A. Roychoudhury, “APIfix: output-oriented program synthesis for combating breaking changes in libraries,” Proceedings of the ACM on Programming Languages, vol. 5, no. OOPSLA, pp. 1–27, 2021, publisher: ACM New York, NY, USA.
  18. R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R. Suzuki, and B. Hartmann, “Learning Syntactic Program Transformations from Examples,” in 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE). Buenos Aires: IEEE, May 2017. https://dx.doi.org/10.1109/ICSE.2017.44. ISBN 978-1-5386-3868-2 pp. 404–415. [Online]. Available: http://ieeexplore.ieee.org/document/7985680/
  19. L. Beurer-Kellner, J. Von Pilgrim, C. Tsigkanos, and T. Kehrer, “A Transformational Approach to Managing Data Model Evolution of Web Services,” IEEE Transactions on Services Computing, pp. 1–1, 2022. https://dx.doi.org/10.1109/TSC.2022.3144613. [Online]. Available: https://ieeexplore.ieee.org/document/9689952/
  20. Z. Huang, J. Chen, J. Jiang, Y. Liang, H. You, and F. Li, “Mapping APIs in Dynamic-typed Programs by Leveraging Transfer Learning,” ACM Transactions on Software Engineering and Methodology, vol. 33, no. 4, pp. 1–29, May 2024. https://dx.doi.org/10.1145/3641848. [Online]. Available: https://dl.acm.org/doi/10.1145/3641848
  21. E. Wittern, “Web APIs - challenges, design points, and research opportunities: invited talk at the 2nd international workshop on API usage and evolution (WAPI ’18),” in Proceedings of the 2nd International Workshop on API Usage and Evolution. Gothenburg Sweden: ACM, Jun. 2018. https://dx.doi.org/10.1145/3194793.3194801. ISBN 978-1-4503-5754-8 pp. 18–18. [Online]. Available: https://dl.acm.org/doi/10.1145/3194793.3194801
  22. S. Amann, H. Nguyen, S. Nadi, T. Nguyen, and M. Mezini, “A Systematic Evaluation of Static API-Misuse Detectors,” IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, vol. 45, no. 12, pp. 1170–1188, Dec. 2019. https://dx.doi.org/10.1109/TSE.2018.2827384
  23. “Overview of Entity Framework Core - EF Core,” accessed: 2025-07-11. [Online]. Available: https://learn.microsoft.com/en-us/ef/core/
  24. “DbContext Class (Microsoft.EntityFrameworkCore),” accessed: 2025-07-11. [Online]. Available: https://learn.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext?view=efcore-9.0
  25. G. Gendron, Q. Bao, M. Witbrock, and G. Dobbie, “Large Language Models Are Not Strong Abstract Reasoners,” in IJCAI Int. Joint Conf. Artif. Intell., Larson K., Ed. International Joint Conferences on Artificial Intelligence, 2024. ISBN 10450823 (ISSN); 978-195679204-1 (ISBN) pp. 6270–6278, journal Abbreviation: IJCAI Int. Joint Conf. Artif. Intell. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204293915&partnerID=40&md5=b5ebdcbbf62f13f3c21b695461a5ab2d
  26. “ChatGPT,” accessed: 2025-07-11. [Online]. Available: https://chatgpt.com
  27. “elastic/elasticsearch,” Jul. 2025, accessed: 2025-07-11. [Online]. Available: https://github.com/elastic/elasticsearch
  28. elastic, “Store outcome values in servicemetrics ‘transaction.success_count‘ by carsonip · Pull Request #9791 · elastic/apm-server,” accessed: 2025-07-11. [Online]. Available: https://github.com/elastic/apm-server/pull/9791