Deep Differentiable Logic Gate Networks Based on Fuzzy Łukasiewicz T-norm
Chan Duong Nguy, Piotr Wasilewski
DOI: http://dx.doi.org/10.15439/2025F1666
Citation: Proceedings of the 20th Conference on Computer Science and Intelligence Systems (FedCSIS), M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 43, pages 219–230 (2025)
Abstract. Differentiable Logic Gate Networks (DLNs) offer a compelling framework for symbolic interpretability and reducing inference cost. Building on prior works using Menger [12] and Zadeh T-norms [18], we investigate the \L{}ukasiewicz T-norm as an alternative relaxation for classical logic gates. While it provides strong gradients in some regions, its flat areas result in vanishing gradients hinder training. To address this issue, we use an initialization strategy [13] that is analogous to residual connection in Neural Networks to encourages error signal propagation during training. Our empirical results show that \L{}ukasiewicz based DLNs, though slightly less accurate, benefit from faster inference and lower memory requirements compared to Neural Networks, giving the opportunity of practical application in e.g. in resource constrained devices. Due to the structural clarity DLNs facilitate direct inspection and tracing of information flow which make them suitable for application in explainable artificial intelligence (XAI)
References
- B. Becker and R. Kohavi, “Adult," UCI Machine Learning Repository, 1996. Available: https://doi.org/10.24432/C5XW20
- S. Bosse, “IoT and Edge Computing using virtualized low-resource integer Machine Learning with support for CNN, ANN, and Decision Trees,” Proc. 18th Conf. Comput. Sci. Intell. Syst. (FedCSIS), vol. 35, pp. 367–376, 2023, M. Ganzha, L. Maciaszek, M. Paprzycki, and D. Śl˛ ezak, Eds., IEEE. Available: http://dx.doi.org/10.15439/2023F7745
- J. Choi, Z. Wang, S. Venkataramani, P. Chuang, V. Srinivasan, and K. Gopalakrishnan, “PACT: Parameterized Clipping Activation for Quantized Neural Networks," 2018. Available: https://arxiv.org/abs/1805.06085
- L. da Cruz, C. Sierra-Franco, G. Silva-Calpa, and A. Raposo, “Enabling Autonomous Medical Image Data Annotation: A human-in-the-loop Reinforcement Learning Approach,” in *Proc. 16th Conf. on Computer Science and Intelligence Systems (FedCSIS)*, vol. 25, M. Ganzha, L. Maciaszek, M. Paprzycki, and D. Śl˛ ezak, Eds., IEEE, 2021, pp. 271–279. Available: http://dx.doi.org/10.15439/2021F86
- L. Dey, S. Jana, T. Dasgupta, and T. Gupta, “Deciphering Clinical Narratives – Augmented Intelligence for Decision Making in Healthcare Sector,” in *Proc. 18th Conf. on Computer Science and Intelligence Systems*, M. Ganzha, L. Maciaszek, M. Paprzycki, and D. Śl˛ ezak, Eds., vol. 35, *Annals of Computer Science and Information Systems*, IEEE, 2023, pp. 11–24. Available: http://dx.doi.org/10.15439/2023F3385
- D. Długosz, A. Królak, T. Eftestøl, S. Ørn, T. Wiktorski, K. R. J. Oskal, and M. Nygård, “ECG Signal Analysis for Troponin Level Assessment and Coronary Artery Disease Detection: the NEEDED Study 2014,” in *Proc. 2018 Federated Conf. Comput. Sci. Inf. Syst.*, vol. 15, M. Ganzha, L. Maciaszek, and M. Paprzycki, Eds. IEEE, 2018, pp. 1065–1068. Available: http://dx.doi.org/10.15439/2018F247
- S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning with limited numerical precision," in Proceedings of the 32nd International Conference on Machine Learning (ICML’15), 2015, pp. 1737–1746.
- T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste, “Sparsity in deep learning: pruning and growth for efficient inference and training in neural networks," J. Mach. Learn. Res., vol. 22, no. 1, art. no. 241, Jan. 2021, 124 pp.
- D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization," 2014. Available: https://arxiv.org/abs/1412.6980
- E. van Krieken, E. Acar, and F. van Harmelen, “Analyzing Differentiable Fuzzy Logic Operators," Artificial Intelligence, vol. 302, 2022, pp. 103602. Available: https://www.sciencedirect.com/science/article/pii/S0004370221001533
- J. Kosiński, K. Szklanny, A. Wieczorkowska, and M. Wichrowski, “An Analysis of Game-Related Emotions Using EMOTIV EPOC,” *Proc. 2018 Federated Conf. on Computer Science and Information Systems (FedCSIS)*, vol. 15, Annals of Computer Science and Information Systems, pp. 913–917, 2018, M. Ganzha, L. Maciaszek, and M. Paprzycki, Eds. IEEE. Available: http://dx.doi.org/10.15439/2018F296
- A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images," Univ. of Toronto, 2012.
- Y. LeCun, C. Cortes, and C. J. C. Burges, “The MNIST database of handwritten digits," 1998. Available: http://yann.lecun.com/exdb/mnist/
- M. Marcinkiewicz and G. Mrukwa, “Quantitative Impact of Label Noise on the Quality of Segmentation of Brain Tumors on MRI scans,” Proc. 2019 Federated Conf. on Computer Science and Information Systems (FedCSIS), vol. 18, pp. 61–65, 2019. Edited by M. Ganzha, L. Maciaszek, and M. Paprzycki. IEEE. Available: http://dx.doi.org/10.15439/2019F273
- K. Menger, “Statistical Metrics," Proc. Nat. Acad. Sci. U.S.A., vol. 28, no. 12, Dec. 1942, pp. 535–537. Available: https://doi.org/10.1073/pnas.28.12.535
- D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen, M. Gibescu, and A. Liotta, “Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science," Nature Communications, vol. 9, no. 1, Jun. 2018, art. 2383. Available: https://doi.org/10.1038/s41467-018-04316-3
- A. Morar, F. Moldoveanu, A. Moldoveanu, O. Balan, and V. Asavei, “GPU Accelerated 2D and 3D Image Processing,” in *Proc. 2017 Federated Conf. Comput. Sci. Inf. Syst. (FedCSIS)*, vol. 11, M. Ganzha, L. Maciaszek, and M. Paprzycki, Eds., IEEE, 2017, pp. 653–656. Available: http://dx.doi.org/10.15439/2017F265
- A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning Library," 2019. Available: https://arxiv.org/abs/1912.01703
- F. Petersen, C. Borgelt, H. Kuehne, and O. Deussen, “Deep Differentiable Logic Gate Networks," in Advances in Neural Information Processing Systems, vol. 35, 2022, pp. 2006–2018. Available: https://proceedings.neurips.cc/paper_files/paper/2022/file/0d3496dd0cec77a999c98d35003203ca-Paper-Conference.pdf
- F. Petersen, H. Kuehne, C. Borgelt, J. Welzel, and S. Ermon, “Convolutional Differentiable Logic Gate Networks," in Advances in Neural Information Processing Systems, vol. 37, 2024, pp. 121185–121203. Available: https://proceedings.neurips.cc/paper_files/paper/2024/file/db988b089d8d97d0f159c15ed0be6a71-Paper-Conference.pdf
- M. Pudo, M. Wosik, and A. Janicki, “Open Vocabulary Keyword Spotting with Small-Footprint ASR-based Architecture and Language Models,” *Proc. 18th Conf. Computer Science and Intelligence Systems (FedCSIS)*, Annals of Computer Science and Information Systems, vol. 35, pp. 657–666, 2023, M. Ganzha, L. Maciaszek, M. Paprzycki, and D. Śl˛ ezak, Eds., IEEE. Available: http://dx.doi.org/10.15439/2023F8594
- H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe, “Binary neural networks: A survey," Pattern Recognition, vol. 105, 2020, art. 107281. Available: https://www.sciencedirect.com/science/article/pii/S0031320320300856
- M. Rapoport and T. Tamir, “Best Response Dynamics for VLSI Physical Design Placement,” in *Proc. 2019 Federated Conf. on Computer Science and Information Systems (FedCSIS)*, M. Ganzha, L. Maciaszek, and M. Paprzycki, Eds., IEEE, vol. 18, 2019, pp. 147–156. Available: http://dx.doi.org/10.15439/2019F91
- D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors," Nature, vol. 323, no. 6088, Oct. 1986, pp. 533–536. Available: https://doi.org/10.1038/323533a0
- A. Telikani, A. Tahmassebi, W. Banzhaf, and A. H. Gandomi, “Evolutionary Machine Learning: A Survey," ACM Comput. Surv., vol. 54, no. 8, art. 161, Oct. 2021. Available: https://doi.org/10.1145/3467477
- S. Thrun et al.,“The Monk’s Problem’s: A Performance Comparison of Different Learning Methods," 1991. Available: https://api.semanticscholar.org/CorpusID:59810521
- L. Uberg and S. Kadry, “Analysis of Brain Tumor Using MRI Images,” in *Proc. 17th Conf. Computer Science and Intelligence Systems (FedCSIS)*, M. Ganzha, L. Maciaszek, M. Paprzycki, and D. Śl˛ ezak, Eds., vol. 30, *Annals of Computer Science and Information Systems*, IEEE, 2022, pp. 201–204. Available: http://dx.doi.org/10.15439/2022F69
- P. Wasilewski, and Ch. D. Nguy, “Deep Differentiable Logic Gate Networks Based on Fuzzy Zadeh’s T-norm,” Proceedings of 6th Polish Conference on Artificial Intelligence (PP-RAI 2025), Katowice, Poland, Apr. 7-9, 2025. to appear in Lecture Notes in Networks and Systems, Springer.
- L. A. Zadeh, “Fuzzy sets," Information and Control, vol. 8, no. 3, 1965, pp. 338–353. Available: https://www.sciencedirect.com/science/article/pii/S001999586590241X
- M. Zwitter and M. Soklic, “Breast Cancer," UCI Machine Learning Repository, 1988. Available: https://doi.org/10.24432/C51P4M