Logo PTI Logo FedCSIS

Proceedings of the 20th Conference on Computer Science and Intelligence Systems (FedCSIS)

Annals of Computer Science and Information Systems, Volume 43

Bias in Classical Life Tables Under Censoring: A Comparative Study With Kaplan-Meier Estimation and Actuarial Estimation Using Real and Simulated Data

, ,

DOI: http://dx.doi.org/10.15439/2025F2264

Citation: Proceedings of the 20th Conference on Computer Science and Intelligence Systems (FedCSIS), M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 43, pages 759764 ()

Full text

Abstract. Classical life tables assume fully observed lifespans and ignore censoring, which can bias survival estimates. In this study, we compare the classical life table with two censoring-aware approaches: the Kaplan-Meier estimator applied to simulated censored lifetimes, and the actuarial estimator assuming uniform censoring within intervals. Using mortality data for the Czech Republic (from year 2021), we show that both the mentioned alternative methods yield systematically lower survival and life expectancy estimates, compared to life tables-based approach. The actuarial estimator is the most conservative, and we provide a formal proof that it underestimates survival relative to Kaplan-Meier. These differences have practical implications for actuarial pricing and longevity risk. We advocate incorporating survival analysis techniques into actuarial workflows when dealing with incomplete or censored data.

References

  1. Slud, Eric V. Actuarial Mathematics and Life-Table Statistics. University of Maryland, 2006. Available at https://www.math.umd.edu/~slud/s470/BookChaps/01Book.pdf.
  2. Missov, Tiago V., and James W. Vaupel. “How much can we trust life tables? Sensitivity of mortality measures to right-censoring.” Palgrave Communications 1 (2015): 1–6. https://doi.org/10.1057/palcomms.2015. 49.
  3. HMD. Human Mortality Database. Max Planck Institute for Demographic Research (Germany), University of California, Berkeley (USA), and French Institute for Demographic Studies (France). Available at www.mortality.org (data downloaded on 22.5.2025).
  4. Štěpánek, L., Habarta, F., Malá, I., Marek, L. (2024). Non-parametric comparison of survival functions with censored data: A computational analysis of greedy and Monte Carlo approaches. Proceedings of the 19th Conference on Computer Science and Intelligence Systems (FedCSIS), 39, 725–730. http://dx.doi.org/10.15439/2024F223
  5. Kaplan, E. L., & Meier, P. "Nonparametric estimation from incomplete observations." (1958). Journal of the American Statistical Association, 53(282), 457–481. https://doi.org/10.1057/palcomms.2015.49.
  6. Štěpánek, L., Habarta, F., Malá, I., Marek, L. (2020). Analysis of asymptotic time complexity of an assumption-free alternative to the log-rank test. Proceedings of the 2020 Federated Conference on Computer Science and Information Systems, 21, 453–460. http://dx.doi.org/10.15439/2020F198
  7. Clark, T. G., Bradburn, M. J., Love, S. B., and Altman, D. G. (2003). Survival analysis part I: Basic concepts and first analyses. British Journal of Cancer, 89(2), 232–238. https://doi.org/10.1038/sj.bjc.6601118
  8. Social Security Administration. Definitions of Life Table Functions. SSA, (2016). https://www.ssa.gov/oact/Downloadables/LifeTableDefinitions. pdf
  9. Office for National Statistics. Guide to calculating national life tables. ONS, (2019). https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthandlifeexpectancies/methodologies/ guidetocalculatingnationallifetables
  10. Furman, Edward. Actuarial Mathematics. York University, (2020). https://edfurman.info.yorku.ca/files/2020/09/MATH3280-2020-lec2.pdf
  11. R Core Team (2024). _R: A Language and Environment for Statistical Computing_. R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.
  12. H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.
  13. Wickham H, François R, Henry L, Müller K, Vaughan D (2023). _dplyr: A Grammar of Data Manipulation_. R package version 1.1.4, <https://CRAN.R-project.org/package=dplyr>.
  14. Therneau T (2024). _A Package for Survival Analysis in R_. R package version 3.6-4, <https://CRAN.R-project.org/package=survival>.
  15. Terry M. Therneau, Patricia M. Grambsch (2000). _Modeling Survival Data: Extending the Cox Model_. Springer, New York. ISBN 0-387-98784-3.