Logo PTI Logo FedCSIS

Proceedings of the 20th Conference on Computer Science and Intelligence Systems (FedCSIS)

Annals of Computer Science and Information Systems, Volume 43

Multi-Source Feature Fusion and Neural Embedding for Predicting Chess Puzzle Difficulty

, , , ,

DOI: http://dx.doi.org/10.15439/2025F2456

Citation: Proceedings of the 20th Conference on Computer Science and Intelligence Systems (FedCSIS), M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 43, pages 843848 ()

Full text

Abstract. Estimating the difficulty of chess puzzles provides a rich testbed for studying human--computer interaction and adaptive learning. Building on recent advances and the FedCSIS 2025 Challenge, we address the task of predicting chess puzzle difficulty ratings using a multi-source representation approach. Our approach integrates pre-trained neural embeddings of board states, solution move sequences, and engine-derived success probabilities. These heterogeneous features are fused via dedicated embedding and projection layers, followed by a multi-layer perceptron regressor. Post-processing calibration and model ensemble further enhance robustness and generalization. Experiments on the FedCSIS 2025 dataset demonstrate that our method effectively leverages both structural and empirical information, achieving strong predictive performance. Our approach achieved fifth place on the final official leaderboard, highlighting the effectiveness of combining neural representations with domain-specific probabilistic features for robust chess puzzle difficulty prediction.

References

  1. M. Campbell, A. Hoane, and F. hsiung Hsu, “Deep blue,” Artificial Intelligence, vol. 134, no. 1, pp. 57–83, 2002. https://doi.org/10.1016/S0004-3702(01)00129-1. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0004370201001291
  2. D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018. https://dx.doi.org/10.1126/science.aar6404. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.aar6404
  3. A. E. Elo, The Rating of Chessplayers, Past and Present. New York: Arco Pub., 1978. ISBN 0668047216 9780668047210
  4. M. E. Glickman, “The glicko system,” Boston University, vol. 16, no. 8, p. 9, 1995.
  5. M. E. Glickman, “Example of the glicko-2 system,” Boston University, vol. 28, p. 2012, 2012.
  6. J. Zyśko, M. Świechowski, S. Stawicki, K. Jagieła, A. Janusz, and D. Ślęzak, “Ieee big data cup 2024 report: Predicting chess puzzle difficulty at knowledgepit.ai,” in 2024 IEEE International Conference on Big Data (BigData). IEEE, 2024. https://dx.doi.org/10.1109/BigData62323.2024.10825289 pp. 8423–8429.
  7. T. Woodruff, O. Filatov, and M. Cognetta, “The bread emoji team’s submission to the ieee bigdata 2024 cup: Predicting chess puzzle difficulty challenge,” in 2024 IEEE International Conference on Big Data (BigData). IEEE, 2024. https://dx.doi.org/10.1109/BigData62323.2024.10826037 pp. 8415–8422.
  8. A. Schütt, T. Huber, and E. André, “Estimating chess puzzle difficulty without past game records using a human problem-solving inspired neural network architecture,” in 2024 IEEE International Conference on Big Data (BigData). IEEE, 2024. https://dx.doi.org/10.1109/BigData62323.2024.10826087 pp. 8396–8402.
  9. S. Björkqvist, “Estimating the puzzlingness of chess puzzles,” in 2024 IEEE International Conference on Big Data (BigData). IEEE, 2024. https://dx.doi.org/10.1109/BigData62323.2024.10825991 pp. 8370–8376.
  10. A. Rafaralahy, “Pairwise learning to rank for chess puzzle difficulty prediction,” in 2024 IEEE International Conference on Big Data (BigData). IEEE, 2024. https://dx.doi.org/10.1109/BigData62323.2024.10825356 pp. 8385–8389.
  11. D. Ruta, M. Liu, and L. Cen, “Moves based prediction of chess puzzle difficulty with convolutional neural networks,” in 2024 IEEE International Conference on Big Data (BigData). IEEE, 2024. https://dx.doi.org/10.1109/BigData62323.2024.10825595 pp. 8390–8395.
  12. S. Miłosz and P. Kapusta, “Predicting chess puzzle difficulty with transformers,” in 2024 IEEE International Conference on Big Data (BigData). IEEE, 2024. https://dx.doi.org/10.1109/BigData62323.2024.10825919 pp. 8377–8384.
  13. J. Zyśko, M. Ślęzak, D. Ślęzak, and M. Świechowski, “FedCSIS 2025 knowledgepit.ai Competition: Predicting Chess Puzzle Difficulty Part 2 & A Step Toward Uncertainty Contests,” in Proceedings of the 20th Conference on Computer Science and Intelligence Systems, ser. Annals of Computer Science and Information Systems, M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, and D. Ślęzak, Eds., vol. 43. Polish Information Processing Society, 2025. https://dx.doi.org/10.15439/2025F5937. [Online]. Available: http://dx.doi.org/10.15439/2025F5937
  14. Z. Tang, D. Jiao, R. McIlroy-Young, J. Kleinberg, S. Sen, and A. Anderson, “Maia-2: A unified model for human-ai alignment in chess,” Advances in Neural Information Processing Systems, vol. 37, pp. 20 919–20 944, 2024. https://dx.doi.org/10.48550/arXiv.2409.20553
  15. R. McIlroy-Young, S. Sen, J. Kleinberg, and A. Anderson, “Aligning superhuman ai with human behavior: Chess as a model system,” in Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, 2020. https://dx.doi.org/10.1145/3394486.3403219 pp. 1677–1687.
  16. D. Ślęzak, A. Janusz, M. Świechowski, A. Chadzyńska-Krasowska, and J. Kamiński, “Do data scientists dream about their skills’ assessment? – transforming a competition platform into an assessment platform,” in 2024 IEEE International Conference on Big Data (BigData), 2024. https://dx.doi.org/10.1109/BigData62323.2024.10825378 pp. 8403–8414.
  17. A. Janusz, M. Przyborowski, P. Biczyk, and D. Ślęzak, “Network device workload prediction: A data mining challenge at knowledge pit,” in 2020 15th Conference on Computer Science and Information Systems (FedCSIS). IEEE, 2020. http://dx.doi.org/10.15439/2020F159 pp. 77–80.
  18. A. Janusz, A. Jamiołkowski, and M. Okulewicz, “Predicting the costs of forwarding contracts: Analysis of data mining competition results,” in 2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS). IEEE, 2022. http://dx.doi.org/10.15439/2022F303 pp. 399–402.
  19. M. Czerwiński, M. Michalak, P. Biczyk, B. Adamczyk, D. Iwanicki, I. Kostorz, M. Brzęczek, A. Janusz, M. Hermansa, Ł. Wawrowski et al., “Cybersecurity threat detection in the behavior of iot devices: analysis of data mining competition results,” in 2023 18th Conference on Computer Science and Intelligence Systems (FedCSIS). IEEE, 2023. http://dx.doi.org/10.15439/2023F3089 pp. 1289–1293.
  20. A. M. Rakićević, P. D. Milošević, I. T. Dragović, A. M. Poledica, M. M. Zukanović, A. Janusz, and D. Ślęzak, “Predicting stock trends using common financial indicators: A summary of fedcsis 2024 data science challenge held on knowledgepit. ai platform,” in 2024 19th Conference on Computer Science and Intelligence Systems (FedCSIS). IEEE, 2024. http://dx.doi.org/10.15439/2024F7912 pp. 731–737.