Logo PTI Logo FedCSIS

Proceedings of the 20th Conference on Computer Science and Intelligence Systems (FedCSIS)

Annals of Computer Science and Information Systems, Volume 43

A New Optimization Method for evaluating Sobol’ Sensitivity Indices

, , , , ,

DOI: http://dx.doi.org/10.15439/2025F4849

Citation: Proceedings of the 20th Conference on Computer Science and Intelligence Systems (FedCSIS), M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 43, pages 777781 ()

Full text

Abstract. This paper presents an optimization method based on a particular polynomial lattice rule with interlaced factor two for estimating sensitivity indices in global sensitivity analysis, focusing on total, first-order and second-order Sobol indices. A comparison with one of the best available methods the Modified Sobol Sequence and component by component construction polynomial lattice rule have been done. Relative errors for key output quantities are analyzed and compared. Our results show that the proposed optimization method consistently outperforms other methods in accurately estimating both first-order and total-order sensitivity indices, especially for parameters with smaller effects. These findings highlight the strengths and limitations of each method, providing guidance for selecting appropriate stochastic sampling strategies in computational sensitivity analysis.

References

  1. N. Bahvalov. On the Approximate Computation of Multiple Integrals. Vestn. Mosc. State Univ. 1959, 4, 3–18.
  2. J. Baldeaux, J. Dick, G. Leobacher, D. Nuyens, F. Pillichshammer, Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules, Numer. Algorithms 2012, 59, 403–431.
  3. R. Cools, F. Kuo, D. Nuyens, Constructing Embedded Lattice Rules for Multivariate Integration, SIAM J. Sci. Comput. 2006 28, 2162–2188.
  4. J. Dick, F. Pillichshammer, 2010. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge.
  5. I. Dimov, Monte Carlo Methods for Applied Scientists, New Jersey, London, Singapore, World Scientific, (2008).
  6. I.T. Dimov, R. Georgieva, Monte Carlo Method for Numerical Integration based on Sobol’ Sequences, Numerical Methods and Applications (I. Dimov, S. Dimova, N. Kolkovska - Eds.), LNCS 6046, Springer, 2011, 50–59.
  7. I. T. Dimov, R. Georgieva, Multidimensional Sensitivity Analysis of Large-scale Mathematical Models. O.P. Iliev et al. (eds.), Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, Springer Proceedings in Mathematics & Statistics 45, Springer Science+Business Media, New York, 2013, 137–156.
  8. I. T. Dimov, R. Georgieva, Tz. Ostromsky, Z. Zlatev, Variance-based Sensitivity Analysis of the Unified Danish Eulerian Model According to Variations of Chemical Rates, – In: I. Dimov, I. Faragó, and L. Vulkov (Eds.) Proc. NAA 2012, LNCS 8236, Springer, 2013, 247–254.
  9. I. T. Dimov, R. Georgieva, Tz. Ostromsky, Z. Zlatev, Sensitivity Studies of Pollutant Concentrations Calculated by UNI-DEM with Respect to the Input Emissions. Central European Journal of Mathematics, Numerical Methods for Large Scale Scientific Computing Vol. 11, No 8, 2013, 1531–1545.
  10. I.T. Dimov, R. Georgieva, Tz. Ostromsky, Z. Zlatev, Advanced Algorithms for Multidimensional Sensitivity Studies of Large-scale Air Pollution Models based on Sobol Sequences, Special issue of Computers and Mathematics with Applications 65 (3), Efficient Numerical Methods for Scientific Applications, Elsevier, 2013, 338 - 351.
  11. I. Dimov, Z. Zlatev, Testing the sensitivity of air pollution levels to variations of some chemical rate constants, Notes Numer. Fluid Mech. 1997, 62, 167–175.
  12. F. Ferretti, A. Saltelli, S. Tarantola, Trends in sensitivity analysis practice in the last decade, Journal of Science of the Total Environment 568, (2016), 666–670.
  13. T. Goda, 2015. Good interlaced polynomial lattice rules for numerical integration in weighted Walsh spaces. Journal of Computational and Applied Mathematics 285, 279–294.
  14. T. Homma, A. Saltelli, Importance measures in global sensitivity analysis of nonlinear models, Reliability Engineering and System Safety 52, (1996), 1–17.
  15. S. Joe, F. Kuo, 2008. Constructing Sobol’ sequences with better two-dimensional projections. SIAM J. Sci. Comput. 30, 2635–2654.
  16. T. Ostromsky, (2022). Performance and Scalability Experiments with a Large-scale Air Pollution Model on the EuroHPC Petascale Supercomputer DISCOVERER. In FedCSIS (Communication Papers) (pp. 81-84).
  17. A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto, Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models, Halsted Press, New York, (2004).
  18. I.H. Sloan A.V. Reztsov, Component-by-component construction of good lattice rules, Math. Comp. 2002, 71, 263–273.
  19. I. Sobol, Numerical methods Monte Carlo, Nauka, Moscow, (1973).
  20. I. M. Sobol, Sensitivity estimates for nonlinear mathematical models, Mathematical Modeling and Computational Experiment 1(4), (1993), 407–414.
  21. I. M. Sobol, S. Tarantola, D. Gatelli, S. Kucherenko, W. Mauntz, Estimating the approximation error when fixing unessential factors in global sensitivity analysis, Reliability Engineering & System Safety 92, (2007), 957–960.
  22. Y. Wang, F.J. Hickernell, An historical overview of lattice point sets, In Monte Carlo and Quasi-Monte Carlo Methods 2000; Fang, KT., Niederreiter, H., Hickernell, F.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2002, pp. 158–167.
  23. Z. Zlatev, Computer Treatment of Large Air Pollution Models, KLUWER Academic Publishers, Dorsrecht-Boston-London, (1995).
  24. Z. Zlatev, I.T. Dimov, K. Georgiev, Three-dimensional version of the Danish Eulerian model, Z. Angew. Math. Mech. 76(S4), (1996), 473–476.
  25. Z. Zlatev, I.T. Dimov, Computational and Numerical Challenges in Environmental Modelling, Elsevier, Amsterdam, (2006).
  26. The Danish Eulerian Model, Available online: http://www2.dmu.dk/AtmosphericEnvironment/DEM/