Logo PTI Logo FedCSIS

Proceedings of the 20th Conference on Computer Science and Intelligence Systems (FedCSIS)

Annals of Computer Science and Information Systems, Volume 43

Interactive Granular Computing: Toward Computing Model for Complex Intelligent Systems

, ,

DOI: http://dx.doi.org/10.15439/2025F6355

Citation: Proceedings of the 20th Conference on Computer Science and Intelligence Systems (FedCSIS), M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 43, pages 5972 ()

Full text

Abstract. ---We present an approach based on the Interactive Granular Computing (IGrC) model as the basis for developing foundations of Complex Intelligent Systems, i.e., Intelligent Systems dealing with complex phenomena (IS's). The generalization of GrC to IGrC was proposed to support the design of IS's treated in IGrC as examples of complex granules (c-granules) with control. To make such systems successful, it is necessary to enable such systems to have continuous interaction with the physical world. The control of c-granules aims to properly implement the physical semantics of specified transformations of c-granules in the physical world. This implementation is based on the discovery of relevant configurations of physical objects, which provides the basis for perceiving relevant data about these objects and their interactions through the control of c-granules. Additionally, to create high-quality models that serve as the basis for the behavior of IS's, these configurations must be adaptively adjusted by control to allow for the perception of relevant data used to induce those models. Unlike information granules from GrC, the correct implementation of c-granule transformations cannot be restricted to the abstract space. An important property of the IS's discussed here is that they cannot be separated from interactions with the physical world. Hence, they cannot be confined to an abstract space. In particular, the relevance of IGrC in searching for rough computational building blocks for cognition is discussed. These computational building blocks are modeled by complex granules (c-granules) and their networks. It is also proposed to use IGrC as the basis for developing IS's grounded on cognitive computing.

References

  1. A. Skowron, A. Jankowski, and S. Dutta, “Interactive granular computing,” Granular Computing, vol. 1, pp. 95–113, 2016. [Online]. Available: doi.org/10.1007/s41066-015-0002-1
  2. A. Skowron and A. Jankowski, “Rough Sets and Interactive Granular Computing,” Fundamenta Informaticae, vol. 147, no. 2-3, pp. 371–385, 2016. [Online]. Available: doi.org/10.3233/FI-2016-1413
  3. S. Dutta and A. Skowron, “Interactive granular computing model for intelligent systems,” in Intelligence Science III: 4th IFIP TC 12 International Conference, ICIS 2020, Durgapur, India, February 24-27, 2021, Revised Selected Papers, ser. IFIP Advances in Information and Communication Technology, Z. Shi, M. K. Chakraborty, and S. Kar, Eds., vol. 623. Springer International Publishing, 2020, pp. 37–48. [Online]. Available: doi.org/10.1007/978-3-030-74826-5_4
  4. S. Dutta and A. Skowron, “Toward a computing model dealing with complex phenomena: Interactive granular computing,” in Computational Collective Intelligence - 13th International Conference, ICCCI 2021, Rhodes, Greece, September 29 - October 1, 2021, Proceedings, ser. Lecture Notes in Computer Science, N. T. Nguyen, L. Iliadis, I. Maglogiannis, and B. Trawinski, Eds., vol. 12876. Springer, 2021, pp. 199–214. [Online]. Available: doi.org/10.1007/978-3-030-88081-1_15
  5. A. Jankowski, Interactive Granular Computations in Networks and Systems Engineering: A Practical Perspective. Heidelberg: Springer, 2017. [Online]. Available: doi.org/10.1007/978-3-319-57627-5
  6. A. Skowron and D. Ślęzak, “Rough sets in interactive granular computing: Toward foundations for intelligent systems interacting with human experts and complex phenomena,” in Proceedings of the International Joint Conference on Rough Sets (IJCRS 2023), Cracow, October 5-8, 2023, ser. Lecture Notes in Computer Science, vol. 14481. Berlin, Heidelberg: Springer, 2023, pp. xv–xxxvii. [Online]. Available: doi.org/10.1007/978-3-031-50959-9
  7. Z. Pawlak, “Rough sets,” International Journal of Computer and Information Sciences, vol. 11, pp. 341–356, 1982. [Online]. Available: doi.org/10.1007/BF01001956
  8. Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, ser. System Theory, Knowledge Engineering and Problem Solving. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1991, vol. 9. [Online]. Available: doi.org/10.1007/978-94-011-3534-4
  9. Z. Pawlak and A. Skowron, “Rudiments of rough sets,” Information Sciences, vol. 177, no. 1, pp. 3–27, 2007. [Online]. Available: doi.org/10.1016/j.ins.2006.06.003
  10. Z. Pawlak and A. Skowron, “Rough sets: Some extensions,” Information Sciences, vol. 177, no. 28-40, p. 1, 2007. [Online]. Available: doi.org/10.1016/j.ins.2006.06.006
  11. F. P. Brooks, Jr., The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition. Addison-Wesley, 1995.
  12. C. L. Ortitz Jr., “Why we need a physically embodied Turing test and what it might look like,” AI Magazine, vol. 37, pp. 55–62, 2016. [Online]. Available: doi.org/10.1609/aimag.v37i1.2645
  13. S. J. Russell and P. Norvig, Artificial Intelligence A Modern Approach. Upper Saddle River, NJ: Pearson Education, Inc., 2021, 4th edition.
  14. Y. Bar-Yam, Dynamics of Complex Systems. Studies in Nonlinearity. Reading, Massachusetts: Addison-Wesley, 1997.
  15. J. H. Holland, Signals and Boundaries. Building Blocks for Complex Adaptive Systems. Cambridge, MA: The MIT Press, 2014. [Online]. Available: doi.org/10.7551/mitpress/9412.001.0001
  16. J. Wa̧s, Modeling and Simulation of Complex Collective Systems. Boca Raton, Fl: CRC Press, 2023. [Online]. Available: doi.org/10.1201/b23388
  17. M. Gell-Mann, The Quark and the Jaguar - Adventures in the Simple and the Complex. London: Brown & Co., 1994.
  18. A. G. Hoekstra, J.Kroc, and P. M. Sloot, Eds., Simulating Complex Systems by Cellular Automata. Heidelberg: Springer, 2010. [Online]. Available: doi.org/10.1007/978-3-642-12203-3
  19. D. Marr, Vision. Cambridge MA: The MIT Press, 2010.
  20. M. Miłkowski, Explaining the Computational Mind. Cambridge MA: The MIT Press, 2013.
  21. Z. W. Pylyshyn, Computation and Cognition. Toward a Foundation for Cognitive Science. Cambridge MA: The MIT Press, 1984.
  22. C. Gershenson, Ed., Design and Control of Self-organizing Systems. Mexico City, Boston: CopIt ArXives, 2007.
  23. D. Deutsch, E. Ekert, and R. Lupacchini, “Machines, logic and quantum physics,” Neural Computation, vol. 6, pp. 265–283, 2000. [Online]. Available: doi.org/10.2307/421056
  24. A. Bargiela and W. Pedrycz, Granular Computing. An Introduction, ser. The Springer International Series in Engineering and Computer Science (SECS). New York, NY: Springer, 2003, vol. 717. [Online]. Available: 10.1007/978-1-4615-1033-8
  25. D. Ciucci and Y. Yao, “Synergy of granular computing, shadowed sets, and three-way decisions,” Information Sciences, vol. 508, pp. 422–425, 2020. [Online]. Available: 10.1016/j.ins.2019.09.003
  26. W. Pedrycz, Granular Computing. Analysis and Design of Intelligent Systems. CRC Press, Taylor & Francis, 2013. [Online]. Available: doi.org/10.1201/9781315216737
  27. T. Jing, C. Wang, W. Pedrycz, Z. Li, G. Succi, and M. Zhou, “Granular models as networks of associations of information granules: A development scheme via augmented principle of justifiable granularity,” Applied Soft Computing, vol. 115, p. 108062, 2022.
  28. W. Pedrycz, A. Skowron, and V. Kreinovich, Eds., Handbook of Granular Computing. Hoboken, NJ: John Wiley & Sons, 2008. [Online]. Available: doi.org/10.1002/9780470724163
  29. J. Qin, L. Martínez, W. Pedrycz, X. Ma, and Y. Liang, “An overview of granular computing in decision-making: Extensions, applications, and challenges,” Information Fusion, vol. 98, p. 101833, 2023. [Online]. Available: https://doi.org/10.1016/j.inffus.2023.101833
  30. A. Skowron and S. Dutta, “Rough sets and fuzzy sets in interactive granular computing,” in Rough Sets - International Joint Conference, IJCRS 2022, Suzhou, China, November 11-14, 2022, Proceedings, ser. Lecture Notes in Computer Science, J. Yao, H. Fujita, X. Yue, D. Miao, J. W. Grzymala-Busse, and F. Li, Eds., vol. 13633. Springer, 2022, pp. 19–29. [Online]. Available: doi.org/10.1007/978-3-031-21244-4_2
  31. G. Wang, “Data-driven granular cognitive computing,” in Rough Sets - International Joint Conference, IJCRS 2017, Olsztyn, Poland, July 3-7, 2017, Proceedings, Part I, ser. Lecture Notes in Computer Science, L. Polkowski, Y. Yao, P. Artiemjew, D. Ciucci, D. Liu, D. Slezak, and B. Zielosko, Eds., vol. 10313. Springer, 2017, pp. 13–24. [Online]. Available: doi.org/10.1007/978-3-319-60837-2_2
  32. J. Yao, “A ten-year review of granular computing,” in 2007 IEEE International Conference on Granular Computing (GrC 2007), San Jose, California, USA, 2-4 November 2007. IEEE Computer Society, 2007, pp. 734–739. [Online]. Available: doi.org/10.1109/GrC.2007.11
  33. J. T. Yao, A. V. Vasilakos, and W. Pedrycz, “Granular computing: Perspectives and challenges,” IEEE Transactions on Cybernetics, vol. 43, no. 6, pp. 1977–1989, 2013. [Online]. Available: doi.org/10.1109/TSMCC.2012.2236648
  34. J. Yao, Y. Yao, D. Ciucci, and K. Huang, “Granular computing and three-way decisions for cognitive analytics,” Cognitive Computing, vol. 14, no. 6, pp. 1801–1804, 2022. [Online]. Available: doi.org/10.1007/s12559-022-10028-0
  35. Y. Yao, “The art of granular computing,” in Rough Sets and Intelligent Systems Paradigms (RSEISP 2007), ser. Lecture Notes in Computer Science, M. Kryszkiewicz, J. F. Peters, H. Rybinski, and A. Skowron, Eds., vol. 4585. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 101–112. [Online]. Available: doi.org/10.1007/978-3-540-73451-2_12
  36. L. Zadeh, “Fuzzy logic = computing with words,” IEEE Transactions on Fuzzy Systems, vol. 4, no. 2, pp. 103–111, 1996. [Online]. Available: doi.org/10.1109/91.493904
  37. L. A. Zadeh, “Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic,” Fuzzy Sets and Systems, vol. 90, pp. 111–127, 1997. [Online]. Available: doi.org/10.1016/S0165-0114(97)00077-8
  38. M. Heller, The Ontology of Physical Objects. Four Dimensional Hunks of Matter, ser. Cambridge Studies in Philosophy. Cambridge, UK: Cambridge University Press, 1990.
  39. A. Omicini, A. Ricci, and M. Viroli, “The multidisciplinary patterns of interaction from sciences to computer science,” in Interactive Computation: The New Paradigme, D. Goldin, S. Smolka, and P. Wegner, Eds. Heidelberg: Springer, 2006, pp. 395–414. [Online]. Available: doi.org/10.1007/3-540-34874-3_15
  40. A. Skowron and J. Stepaniuk, “Information granules and rough-neural computing,” in Rough-Neural Computing: Techniques for Computing with Words, ser. Cognitive Technologies, S. K. Pal, L. Polkowski, and A. Skowron, Eds. Heidelberg: Springer-Verlag, 2004, pp. 43–84. [Online]. Available: doi.org/10.1007/978-3-642-18859-6_3
  41. S. Dutta, A. Skowron, and L. Sosnowski, “Medical decision support in the light of interactive granular computing: Lessons from the ovufriend project,” International Journal of Approximate Reasoning, vol. 165, p. 109103, 2024. [Online]. Available: doi.org/10.1016/J.IJAR.2023.109103
  42. R. Ciesla, The Book of Chatbots. From ELIZA to ChatGPT. Cham: Springer, 2024. [Online]. Available: doi.org/10.1007/978-3-031-51004-5
  43. L. A. Zadeh, “Foreword,” in Rough-Neural Computing: Techniques for Computing with Words, S. K. Pal, L. Polkowski, and A. Skowron, Eds. Heidelberg: Springer, 2004, pp. ix–xi. [Online]. Available: oi.org/10.1007/978-3-642-18859-6
  44. L. A. Zadeh, Computing with Words: Principal Concepts and Ideas, ser. Studies in Fuzziness and Soft Computing. Heidelberg: Springer, 2012, vol. 277.
  45. E. Eryurek, U. Gilad, V. Lakshmanan, A. Kibunguchy-Grant, and J. Ashdown, Data Governance: The Definitive Guide: People, Processes, and Tools to Operationalize Data Trustworthiness. Sebastopol, CA: O’Reilly Media, 2021.
  46. M. Mitchell, Artificial Intelligence: A Guide for Thinking Humans. New York, NY: Farrar, Straus, Giroux, 2019.
  47. M. Mitchell, “Abstraction and analogy-making in Artificial Intelligence,” Annals Reports of the New York Academy of Sciences, vol. 1505, pp. 79–101, 2021. [Online]. Available: doi.org/10.1111/nyas.14619
  48. B. Shneiderman, Human – Centered AI. Oxford, UK: Oxford University Press, 2022. [Online]. Available: doi.org/10.1093/oso/9780192845290.001.0001
  49. R. M. Monarch, Human-in-the-Loop Machine Learning. Active Learning and Annotation for Human-Centered AI. Shelter Island, NY: MANNING, 2021.
  50. L. Wittgenstein, Philosophical Investigations (translated by G.E.M. Anscombe). New York: Macmillan Co., 1953.
  51. Z. Pawlak, “Information systems – theoretical foundations,” Information Systems, vol. 6, pp. 205–218, 1981. [Online]. Available: doi.org/10.1016/0306-4379(81)90023-5
  52. A. Skowron and D. Ślęzak, “Rough sets turn 40: From information systems to intelligent systems,” in Proceedings of the 17th Conference on Computer Science and Intelligence Systems, FedCSIS 2022, Sofia, Bulgaria, September 4-7, 2022, ser. Annals of Computer Science and Information Systems, M. Ganzha, L. A. Maciaszek, M. Paprzycki, and D. Ślęzak, Eds., vol. 30, 2022, pp. 23–34. [Online]. Available: doi.org/10.15439/2022F310
  53. T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Heidelberg: Springer-Verlag, 2001. [Online]. Available: doi.org/10.1007/978-0-387-84858-7
  54. D. Matthews, A. Spielberg, D. Rus, S. Kriegman, and J. Bongard, “Efficient automatic design of robots,” Proceedings of the National Academy of Sciences (PNAS), vol. 120, pp. 1–7, 2023. [Online]. Available: doi.org/10.1073/pnas.2305180120
  55. N. Brown, Ed., Artificial Intelligence in Drug Discovery, ser. Drug Discovery Series. London: Royal Society of Chemistry, 2021, vol. 75.
  56. V. Dolzhenko, Algorithmic Trading Systems and Strategies: A New Approach: Design, Build, and Maintain an Effective Strategy Search Mechanism. New York, NY: Apress Media, 2024. [Online]. Available: doi.org/10.1007/979-8-8688-0357-4
  57. R. Gupta, S. Tiwari, and P. Chaudhary, Generative AI: Techniques, Models and Applications. Cham: Springer Nature, 2025. [Online]. Available: doi.org/10.1007/978-3-031-82062-5
  58. S. Gerrish, How Smart Machines Think. Cambridge, MA: MIT Press, 2018. [Online]. Available: doi.org/10.7551/mitpress/11440.001.0001
  59. C. Gershenson, Design and Control of Self-organizing Systems, PhD Thesis. Brussel: Vrije Universiteit, 2007. [Online]. Available: https://web-archive.southampton.ac.uk/cogprints.org/5442/1/thesis.pdf
  60. C. Gershenson, “Guiding the self-organization of cyber-physical systems,” Frontiers Robotics AI, vol. 7, pp. 1–13, 2020. [Online]. Available: https://doi.org/10.3389/frobt.2020.00041
  61. J. Hurwitz, M. Kaufman, and A. Bowles, Cognitive Computing and Big Data Analytics. Indianapolis, IN: John Wiley & Sons, Inc., 2015.
  62. J. M. Mendel, “The perceptual computer: an architecture for computing with words,” in Proceedings of Modeling with Words, Workshop in Proceedings of FUZZ-IEEE, Melbourne, Australia, 2010, pp. 35–38.
  63. M. Minsky, Society of Mind. New York, NY: Simon & Schuster, 1985.
  64. M. Minsky, The Emotion Machine. Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind. New York, NY: Simon & Schuster, 2006.
  65. M. Gazzaniga, R. B. Ivry, and G. R. Mangun, Cognitive Neuroscience: The Biology of the Mind. New York, NY: W. W. Norton & Company, 2019.
  66. A. Ehrenfeucht and G. Rozenberg, “Reaction systems: A model of computation inspired by biochemistry,” in Developments in Language Theory, Y. Gao, H. Lu, S. Seki, and S. Yu, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 1–3. [Online]. Available: doi.org/10.1007/978-3-642-14455-4_1
  67. J. M. Bower and H. Bolouri, Eds., Computational Modeling of Genetic and Biochemical Networks. Cambridge, MA: MIT Press, 2001. [Online]. Available: doi.org/10.7551/mitpress/2018.001.0001