Implementation of random number generator service with IoT device
Rafał Wojszczyk, Aneta Hapka, Kacper Akdağ-Ochnik
DOI: http://dx.doi.org/10.15439/2025F6466
Citation: Proceedings of the 20th Conference on Computer Science and Intelligence Systems (FedCSIS), M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 43, pages 615–624 (2025)
Abstract. The paper focuses on the problem of generating random numbers, which on the surface appears to be a very simple problem. However, most software tools, which are used to generate such numbers, generate so-called pseudorandom numbers. This means that, if certain conditions are met, it is possible to reproduce successive sequences of generated numbers. The paper solves this problem by building an IoT device that generates true random numbers based on selected physical properties. The device communicates with a server that provides a web service and an API for generating random values in multiple variations.
References
- Rak, Tomasz, and Dariusz Rzońca. 2024. "Security and Privacy in Networks and Multimedia" Electronics 13, no. 15: 2887. https://doi.org/10.3390/electronics13152887
- Felkner, Anna, Jan Adamski, Jakub Koman, Marcin Rytel, Marek Janiszewski, Piotr Lewandowski, Rafał Pachnia, and Wojciech Nowakowski. 2024. "Vulnerability and Attack Repository for IoT: Addressing Challenges and Opportunities in Internet of Things Vulnerability Databases" Applied Sciences 14, no. 22: 10513. https://doi.org/10.3390/app142210513
- Łukasz Sobaszek and Arkadiusz Gola and Edward Kozłowski, Application of survival function in robust scheduling of production jobs, editors M. Ganzha and L. Maciaszek and M. Paprzycki, Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, vol. 11, 2017, https://dx.doi.org/10.15439/2017F276
- Daniel Czyczyn-Egird, Rafał Wojszczyk, “The effectiveness of data mining techniques in the detection of DDoS attacks”. In: Omatu, S., Rodríguez, S., Villarrubia, G., Faria, P., Sitek, P., Prieto, J. (eds) Distributed Computing and Artificial Intelligence, 14th International Conference. DCAI 2017. Advances in Intelligent Systems and Computing, vol 620. Springer, Cham. https://doi.org/10.1007/978-3-319-62410-5_7
- T. Nowicki, K. Chlebicki, D. Pierzchała, R. Waszkowski and K. Worwa, "Simulation method of reliability evaluation for RFID based restricted access administrative office," 2017 IEEE International Conference on RFID Technology & Application (RFID-TA), Warsaw, Poland, 2017, pp. 89-94, https://dx.doi.org/10.1109/RFID-TA.2017.8098877.
- Wolfgang Hörmann, Josef Leydold, and Gerhard Derflinger. Automatic nonuniform random variate generation. Springer Science & Business Media, 2013.
- Mario Stipčević and Çetin Koç. “True Random Number Generators”. In: Nov. 2014, pp. 275–315. isbn: 978-3-319-10682-3. https://dx.doi.org/10.1007/978-3-31910683-0_12.
- Miguel Herrero-Collantes and Juan Carlos Garcia-Escartin. “Quantum random number generators”. In: Reviews of Modern Physics 89.1 (Feb. 2017). issn: 1539-0756. https://dx.doi.org/10.1103/revmodphys.89.015004. url: http://dx.doi.org/10.1103/RevModPhys.89.015004
- John von Neumann. “Various techniques used in connection with random digits”. In: Monte Carlo Method. Ed. by A. S. Householder, G. E. Forsythe, and H. H. Germond. Vol. 12. National Bureau of Standards Applied Mathematics Series. Washington, D.C.: U.S. Government Printing Office, 1951, pp. 36–38
- Derrick H. Lehmer. “Mathematical methods in large-scale computing units”. In: Proceedings of 2nd Symposium on Large-Scale Digital Calculating Machinery. 1951, pp. 141–146.
- Makoto Matsumoto and Takuji Nishimura. “Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator”. In: ACM Trans. Model. Comput. Simul. 8.1 (Jan. 1998), pp. 3–30. issn: 1049-3301. https://dx.doi.org/10.1145/272991.272995..
- George Marsaglia. “Xorshift RNGs”. In: Journal of Statistical Software 8.14 (2003), pp. 1–6. https://dx.doi.org/10.18637/jss.v008.i14.
- François O Panneton, Pierre l’Ecuyer, and Makoto Matsumoto. “Improved long-period generators based on linear recurrences modulo 2”. In: ACM Transactions on Mathematical Software 32.1 (2006), pp. 1–16. https://dx.doi.org/10.1145/1132973.1132974.
- Melissa E. O’Neill. PCG: A Family of Simple Fast Space-Efficient Statistically Good Algorithms for Random Number Generation. Technical Report HMCCS-2014-0905. Harvey Mudd College, Sept. 2014.
- L’ubomíra Balková et al. “Aperiodic pseudorandom number generators based on infinite words”. In: Theoretical Computer Science 647 (Sept. 2016), pp. 85 - 100. issn: 0304-3975. https://dx.doi.org/10.1016/j.tcs.2016.07.042.
- Lenore Blum, Manuel Blum, and Michael Shub. “A Simple Unpredictable Pseudo-Random Number Generator”. In: SIAM Journal on Computing 15.2 (1986), pp. 364–383. https://dx.doi.org/10.1137/0215025.
- George Marsaglia. “Random number generators”. In: Journal of Modern Applied Statistical Methods 2.1 (May 2003), pp. 2–13. https://dx.doi.org/10.22237/jmasm/1051747320.
- John Salmon et al. “Parallel random numbers: as easy as 1, 2, 3”. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis. 2011, Article No. 16. https://dx.doi.org/10.1145/2063384.2063405.
- C. D. Motchenbacher and J. A. Connelly. Low-noise electronic system design. Wiley Interscience, 1993. isbn: 0-471-57742-1.
- David Cirauqui and Miguel Ángel García-March and Guillem Guigó Corominas and Tobias Graß and Przemysław R. Grzybowski and Gorka Muñoz-Gil and J. R. M. Saavedra and Maciej Lewenstein. Quantum Random Number Generators : Benchmarking and Challenges. 2022.
- X. Li et al. “Scalable parallel physical random number generator based on a superluminescent LED”. In: Opt. Lett. 36 (2011), pp. 1020–1022.
- Darren Hurley-Smith, Julio Hernandez-CastroJ, ulio Hernandez-Castro, Bias in the TRNG of the Mifare DESFire EV1, RFIDSec 2016
- Espressif Systems. ESP32 Technical Reference Manual. Accessed: 2023-10-01. 2023. url: https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf#rng