The bread emoji Team’s Submission to the 2025 FedCSIS Predicting Chess Puzzle Difficulty Challenge
Tyler Woodruff, Luke Imbing, Marco Cognetta
DOI: http://dx.doi.org/10.15439/2025F6771
Citation: Proceedings of the 20th Conference on Computer Science and Intelligence Systems (FedCSIS), M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 43, pages 837–842 (2025)
Abstract. We detail the bread emoji team's submission to the FedCSIS 2025 Predicting Chess Puzzle Difficulty Challenge. Our solution revolved around improving our submission from the previous competition by incorporating a new puzzle metadata feature and optimizing our implementation to allow for larger model ensembles and more stable training. Similar to our submission from last year, our system has two stages: learning a strong predictor for the Lichess dataset and then rescaling the distribution using an empirically-guided post-processing step to fit it to the smaller and noisier competition dataset. Our submission placed second with a ~3.9\% gap in mean squared error (MSE) from first place in the final evaluation.
References
- J. Zyśko, M. Ślȩzak, D. Ślȩzak, and M. Świechowski, “FedCSIS 2025 knowledgepit.ai Competition: Predicting Chess Puzzle Difficulty Part 2 & A Step Toward Uncertainty Contests,” in Proceedings of the 20th Conference on Computer Science and Intelligence Systems, ser. Annals of Computer Science and Information Systems, M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, and D. Ślȩzak, Eds., vol. 43. Polish Information Processing Society, 2025. [Online]. Available: http://dx.doi.org/10.15439/2025F5937
- M. E. Glickman, “Example of the glicko-2 system,” http://www.glicko.net/glicko/glicko2.pdf, 2022.
- T. Woodruff, O. Filatov, and M. Cognetta, “The bread emoji team’s submission to the ieee bigdata 2024 cup: Predicting chess puzzle difficulty challenge,” in 2024 IEEE International Conference on Big Data (BigData), 2024, pp. 8415–8422.
- J. Zyśko, M. Świechowski, S. Stawicki, K. Jagieła, A. Janusz, and D. Ślȩzak, “Ieee big data cup 2024 report: Predicting chess puzzle difficulty at knowledgepit.ai,” in IEEE International Conference on Big Data, Big Data 2024, Washington DC, USA, December 15-18, 2024. IEEE, 2024.
- D. Klein, “Neural networks for chess,” 2022. [Online]. Available: https://arxiv.org/abs/2209.01506
- R. McIlroy-Young, S. Sen, J. M. Kleinberg, and A. Anderson, “Aligning superhuman AI with human behavior: Chess as a model system,” in KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020, R. Gupta, Y. Liu, J. Tang, and B. A. Prakash, Eds. ACM, 2020, pp. 1677–1687. [Online]. Available: https://doi.org/10.1145/3394486.3403219
- Z. Tang, D. Jiao, R. McIlroy-Young, J. Kleinberg, S. Sen, and A. Anderson, “Maia-2: A unified model for human-ai alignment in chess,” 2024. [Online]. Available: https://arxiv.org/abs/2409.20553
- T. L. Authors, “Leela chess zero,” https://lczero.org/.
- D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis, “Mastering chess and shogi by self-play with a general reinforcement learning algorithm,” 2017. [Online]. Available: https://arxiv.org/abs/1712.01815
- S. Björkqvist, “Estimating the puzzlingness of chess puzzles,” in 2024 IEEE International Conference on Big Data (BigData), 2024, pp. 8370–8376.