Logo PTI Logo FedCSIS

Proceedings of the 20th Conference on Computer Science and Intelligence Systems (FedCSIS)

Annals of Computer Science and Information Systems, Volume 43

A Framework for Model-Driven AI-Assisted Generation of IT Project Management Plan and Scope Documents

, ,

DOI: http://dx.doi.org/10.15439/2025F8736

Citation: Proceedings of the 20th Conference on Computer Science and Intelligence Systems (FedCSIS), M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 43, pages 121132 ()

Full text

Abstract. This paper presents a model-driven AI-assisted approach for generating IT project management plan and scope documents, aiming to improve efficiency and quality in software development projects. Effective documentation in the early project phase is critical, yet often resource-intensive. The proposed solution consolidates best practices from widely used project management methodologies and standards to create a dynamic, adaptable framework for document generation. The study identifies key components and input data required for generating high-quality plans using model transformations and generative AI. A prototype supporting the solution is developed featuring a local processing engine, integrated with a large language model, a vector database, and an embedded model.

References

  1. X. Zhang and B. Dorn, “Accelerating software development through agile practices: A case study of a small-scale, time-intensive web development project at a college-level IT competition,” *J. Inf. Technol. Educ.*, vol. 11, pp. 1–12, 2012, https://dx.doi.org/10.28945/1545.
  2. H. Kerzner, “Project Management: A Systems Approach to Planning, Scheduling, and Controlling”, 13th ed. Hoboken, NJ, USA: Wiley, Mar. 2022, ISBN 978‑1119805373.
  3. B. Habib and R. Romli, "A Systematic Mapping Study on Issues and Importance of Documentation in Agile," 2021 IEEE 12th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 2021, pp. 198-202, https://dx.doi.org/10.1109/ICSESS52187.2021.9522254
  4. W. Behutiye, P. Seppänen, P. Rodríguez, and M. Oivo, "Documentation of quality requirements in agile software development," in Evaluation and Assessment in Software Engineering (EASE’ 20), Trondheim, Norway, Apr. 15–17, 2020, ACM, New York, NY, USA, pp. 1–10, https://dx.doi.org/10.1145/3383219.3383245
  5. A. Ataman, “Data quality in AI: Challenges, importance & best practices,” AIMultiple. [Online]. Available: https://research.aimultiple.com/data-quality-ai/
  6. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, et al., “Language models are few-shot learners,” Adv. Neural Inf. Process. Syst., vol. 33, pp. 1877–1901, 2020, https://dx.doi.org/10.48550/arXiv.2005.14165
  7. P. Liang, R. Bommasani, D. Tsipras, et al., “Holistic evaluation of language models,” arXiv preprint https://arxiv.org/abs/2211.09110, 2022, https://dx.doi.org/10.48550/arXiv.2211.09110.
  8. OpenAI, “GPT-4 Technical Report,” OpenAI, Mar. 2023. [Online]. Available: https://openai.com/research/gpt-4
  9. F. Nafz, M. Krajinovic, and M. Ley, “Artificial intelligence in software documentation: Embracing the documentation as code paradigm,” in “Go Where the Bugs Are”, G. Ernst et al., Eds., “Lecture Notes in Computer Science”, vol. 15765, Cham, Switzerland: Springer, 2025, https://dx.doi.org/10.1007/978-3-031-92196-4_14.
  10. K. J. Ajeigbe and O. Emma, “Dynamic Documentation Generation with AI,” 2024. Available at: https://www.researchgate.net/publication/390265865_Dynamic_Documentation_Generation_with_AI
  11. K. Dearstyne, A. Rodriguez, and J. Cleland-Huang, “Supporting Software Maintenance with Dynamically Generated Document Hierarchies,” arXiv preprint https://arxiv.org/abs/2408.05829, Aug. 2024, https://dx.doi.org/10.48550/arXiv.2408.05829
  12. S. Mehta, A. Rogers, and T. Gilbert, “Dynamic Documentation for AI Systems,” arXiv preprint https://arxiv.org/abs/2303.10854, Mar. 2023, https://dx.doi.org/10.48550/arXiv.2303.10854.
  13. C. Leyh, A. Lorenz, M. J. Faruga, and L. Koller, “Critical Success Factors for ERP Projects Revisited: An Update of Literature Reviews,” in Proc. 19th Conf. on Computer Science and Intelligence Systems (FedCSIS), vol. 39, Annals of Computer Science and Information Systems, pp. 131–140, 2024, https://dx.doi.org/10.15439/2024F6271
  14. T. Vetriselvi, M. Mathur, and M. Bhuvaneswari, “Applying Generative AI to Create SOP, Reducing API Costs Through Prompt Compression and Evaluating LLM Responses with Tonic Validate RAG Metrics,” in Proc. 4th Int. Conf. Ubiquitous Comput. Intell. Inf. Syst. (ICUIS), 2024, https://dx.doi.org/10.1109/ICUIS64676.2024.10867024
  15. S. Tsuchiwata, Y. Tanabe, Y. Hosoya, and K. Aoyama, “Generative AI Driven Clinical Drug Development,” Japanese Journal of Clinical Pharmacology and Therapeutics, 2025, https://dx.doi.org/10.3999/jscpt.56.2_109
  16. A. Barcaui and A. Monat, “Who is better in project planning? Generative artificial intelligence or project managers?,” Project Leadership and Society, vol. 4, 2023. 10.1016/j.plas.2023.100101
  17. A. Bahi, J. Gharib, and Y. Gahi, “Integrating Generative AI for Advancing Agile Software Development and Mitigating Project Management Challenges,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 1, 2024, https://dx.doi.org/10.14569/IJACSA.2024.0150306
  18. Z. Alliata, T. Singhal, and A.-M. Bozagiu, “The AI Scrum Master: Using Large Language Models (LLMs) to Automate Agile Project Management Tasks,” in Lect. Notes Bus. Inf. Process., 2025, https://dx.doi.org/10.1007/978-3-031-72781-8_12
  19. M. AbuAlfateh, M. Ali, and M. Messaadia, “Establishing Key Performance Indicators for Human-Generative AI Collaboration,” Studies in Big Data, vol. 110, 2025, https://dx.doi.org/10.1007/978-3-031-83911-5_42
  20. V. Bilgram and F. Laarmann, “Accelerating Innovation With Generative AI: AI-Augmented Digital Prototyping and Innovation Methods,” IEEE Eng. Manag. Rev., vol. 51, no. 2, pp. 40–47, 2023, https://dx.doi.org/10.1109/EMR.2023.3272799
  21. N. Ibadildin, Z. Kenzhin, G. Yeshenkulova, and A. Kadyrova, “Artificial Intelligence in Project Management: A Bibliometric Analysis,” Problems and Perspectives in Management, vol. 23, no. 1, pp. 130–142, 2025, https://dx.doi.org/10.21511/ppm.23(2).2025.17
  22. S. Salimimoghadam, A. N. Ghanbaripour, R. J. Tumpa, and M. Skitmore, “The Rise of Artificial Intelligence in Project Management: A Systematic Literature Review of Current Opportunities, Enablers, and Barriers,” Buildings, vol. 15, no. 2, 2025. https://dx.doi.org/10.3390/buildings15071130
  23. O. Nikiforova, J. Grabis, O. Pastor, K. Babris, M. K. Miļūne, and R. Bobkovs, “Model-Based Methodology for Development of IT Project Management Plan and Scope Using Artificial Intelligence: Project in Progress,” in Proc. 19th Int. Conf. on Research Challenges in Information Science (RCIS), CEUR Workshop Proc., 2025 (in press).
  24. J. White, C. Kirchner, T. Paschal, S. Hays, A. Kazerouni, T. Mytkowicz, and M. Monperrus, “A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT,” arXiv preprint https://arxiv.org/abs/2302.11382, 2023, https://dx.doi.org/10.48550/arXiv.2302.11382
  25. P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing,” ACM Comput. Surv., vol. 55, no. 9, Art. no. 195, pp. 1–35, Sep. 2023, https://dx.doi.org/10.1145/3560815
  26. O. Nikiforova, K. Babris, U. Karlovs-Karlovskis, M. Narigina, A. Romanovs, A. Jansone, J. Grabis, and O. Pastor, “Model Transformations Used in IT Project Initial Phases: Systematic Literature Review,” Computers, vol. 14, no. 2, p. 40, 2025, https://dx.doi.org/10.3390/computers14020040
  27. O. Nikiforova, K. Babris, M. K. Miļūne, N. Tanguturi, and Ó. Pastor, “Key Artefacts in the Initial Phases of IT Project Management: Systematic Mapping Study,” in Proc. 20th Int. Conf. Evaluation of Novel Approaches to Software Engineering (ENASE), SciTePress, 2025, pp. 773–781, https://dx.doi.org/10.5220/0013471000003928
  28. A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design Science in Information Systems Research,” *MIS Quarterly*, vol. 28, no. 1, pp. 75–105, 2004, https://dx.doi.org/10.2307/25148625.
  29. M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engineering in Practice, 2nd ed. Cham, Switzerland: Springer, 2017.
  30. O. Pastor and J. Molina, Model-Driven Architecture in Practice: A Software Production Environment Based on Conceptual Modeling. Berlin/Heidelberg, Germany: Springer, 2007. [Online]. Available: https://doi.org/10.1007/978-3-540-71868-0
  31. O. Nikiforova, M. K. Miļūne, K. Babris, and O. Pastor, “Generation of IT Project Documentation Elements from a Model Transformation Chain,” in Proc. Int. Conf. on Software Technologies (ICSOFT), 2025, pp. 1–10, DOI: 10.5220/0013568300003964
  32. Agile Manifesto (2001) https://agilemanifesto.org/
  33. ISO/IEC/IEEE, Systems and software engineering — Life cycle processes — Requirements engineering, ISO/IEC/IEEE 29148:2018, International Organization for Standardization, Geneva, Switzerland, 2018
  34. ISO/IEC/IEEE, Systems and software engineering — Life cycle processes — Project management, ISO/IEC/IEEE 16326:2019, International Organization for Standardization, Geneva, Switzerland, 2019
  35. ISO, Project, programme and portfolio management — Guidance on project management, ISO 21502:2020, International Organization for Standardization, Geneva, Switzerland, 2020.
  36. P. Bourque and R. E. Fairley, Eds., Guide to the Software Engineering Body of Knowledge (SWEBOK Guide), Version 4.0, IEEE Computer Society, 2024. [Online]. Available: https://www.computer.org/education/bodies-of-knowledge/software-engineering
  37. Project Management Institute, A Guide to the Project Management Body of Knowledge (PMBOK® Guide), 7th ed., Newtown Square, PA, USA: PMI, 2021
  38. O. Nikiforova, M. Kirikova, and N. Pavlova, “Two-hemisphere driven approach: Application for knowledge modeling,” in Proc. 7th Int. Baltic Conf. Databases and Information Systems, 2006, pp. 244–250, art. no. 1678503. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34250753483
  39. O. Nikiforova and K. Gusarovs, “Comparison of BrainTool to other UML modeling and model transformation tools”, AIP Conf. Proc., vol. 1863, art. no. 330005, 2017. https://dx.doi.org/10.1063/1.4992503
  40. J. He, M. Rungta, D. Koleczek, A. Sekhon, F. X. Wang, and S. Hasan, “Does Prompt Formatting Have Any Impact on LLM Performance?,” arXiv preprint https://arxiv.org/abs/2411.10541, 2024, https://dx.doi.org/10.48550/arXiv.2411.10541
  41. A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe, et al., “Self-Refine: Iterative Refinement with Self-Feedback,” arXiv preprint https://arxiv.org/abs/2303.17651, 2023, https://dx.doi.org/10.48550/arXiv.2303.17651
  42. OpenAI, ChatGPT (May 2024 version) [Large Language Model]. Available: https://chat.openai.com/
  43. T. Bao, J. Yang, Y. Yang, and Y. Yin, "RM2Doc: A tool for automatic generation of requirements documents from requirements models," in Proc. ACM/IEEE 44th Int. Conf. Softw. Eng.: Companion Proc. (ICSE ’22), New York, NY, USA, 2022, pp. 188–192, https://dx.doi.org/10.1145/3510454.3516850.
  44. Vectara. (2024). Hallucination leaderboard [Computer software]. GitHub. https://github.com/vectara/hallucination-leaderboard