A Framework for Model-Driven AI-Assisted Generation of IT Project Management Plan and Scope Documents
Jānis Rihards Blazevičs, Oksana Nikiforova, Oscar Pastor
DOI: http://dx.doi.org/10.15439/2025F8736
Citation: Proceedings of the 20th Conference on Computer Science and Intelligence Systems (FedCSIS), M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 43, pages 121–132 (2025)
Abstract. This paper presents a model-driven AI-assisted approach for generating IT project management plan and scope documents, aiming to improve efficiency and quality in software development projects. Effective documentation in the early project phase is critical, yet often resource-intensive. The proposed solution consolidates best practices from widely used project management methodologies and standards to create a dynamic, adaptable framework for document generation. The study identifies key components and input data required for generating high-quality plans using model transformations and generative AI. A prototype supporting the solution is developed featuring a local processing engine, integrated with a large language model, a vector database, and an embedded model.
References
- X. Zhang and B. Dorn, “Accelerating software development through agile practices: A case study of a small-scale, time-intensive web development project at a college-level IT competition,” *J. Inf. Technol. Educ.*, vol. 11, pp. 1–12, 2012, https://dx.doi.org/10.28945/1545.
- H. Kerzner, “Project Management: A Systems Approach to Planning, Scheduling, and Controlling”, 13th ed. Hoboken, NJ, USA: Wiley, Mar. 2022, ISBN 978‑1119805373.
- B. Habib and R. Romli, "A Systematic Mapping Study on Issues and Importance of Documentation in Agile," 2021 IEEE 12th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 2021, pp. 198-202, https://dx.doi.org/10.1109/ICSESS52187.2021.9522254
- W. Behutiye, P. Seppänen, P. Rodríguez, and M. Oivo, "Documentation of quality requirements in agile software development," in Evaluation and Assessment in Software Engineering (EASE’ 20), Trondheim, Norway, Apr. 15–17, 2020, ACM, New York, NY, USA, pp. 1–10, https://dx.doi.org/10.1145/3383219.3383245
- A. Ataman, “Data quality in AI: Challenges, importance & best practices,” AIMultiple. [Online]. Available: https://research.aimultiple.com/data-quality-ai/
- T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, et al., “Language models are few-shot learners,” Adv. Neural Inf. Process. Syst., vol. 33, pp. 1877–1901, 2020, https://dx.doi.org/10.48550/arXiv.2005.14165
- P. Liang, R. Bommasani, D. Tsipras, et al., “Holistic evaluation of language models,” arXiv preprint https://arxiv.org/abs/2211.09110, 2022, https://dx.doi.org/10.48550/arXiv.2211.09110.
- OpenAI, “GPT-4 Technical Report,” OpenAI, Mar. 2023. [Online]. Available: https://openai.com/research/gpt-4
- F. Nafz, M. Krajinovic, and M. Ley, “Artificial intelligence in software documentation: Embracing the documentation as code paradigm,” in “Go Where the Bugs Are”, G. Ernst et al., Eds., “Lecture Notes in Computer Science”, vol. 15765, Cham, Switzerland: Springer, 2025, https://dx.doi.org/10.1007/978-3-031-92196-4_14.
- K. J. Ajeigbe and O. Emma, “Dynamic Documentation Generation with AI,” 2024. Available at: https://www.researchgate.net/publication/390265865_Dynamic_Documentation_Generation_with_AI
- K. Dearstyne, A. Rodriguez, and J. Cleland-Huang, “Supporting Software Maintenance with Dynamically Generated Document Hierarchies,” arXiv preprint https://arxiv.org/abs/2408.05829, Aug. 2024, https://dx.doi.org/10.48550/arXiv.2408.05829
- S. Mehta, A. Rogers, and T. Gilbert, “Dynamic Documentation for AI Systems,” arXiv preprint https://arxiv.org/abs/2303.10854, Mar. 2023, https://dx.doi.org/10.48550/arXiv.2303.10854.
- C. Leyh, A. Lorenz, M. J. Faruga, and L. Koller, “Critical Success Factors for ERP Projects Revisited: An Update of Literature Reviews,” in Proc. 19th Conf. on Computer Science and Intelligence Systems (FedCSIS), vol. 39, Annals of Computer Science and Information Systems, pp. 131–140, 2024, https://dx.doi.org/10.15439/2024F6271
- T. Vetriselvi, M. Mathur, and M. Bhuvaneswari, “Applying Generative AI to Create SOP, Reducing API Costs Through Prompt Compression and Evaluating LLM Responses with Tonic Validate RAG Metrics,” in Proc. 4th Int. Conf. Ubiquitous Comput. Intell. Inf. Syst. (ICUIS), 2024, https://dx.doi.org/10.1109/ICUIS64676.2024.10867024
- S. Tsuchiwata, Y. Tanabe, Y. Hosoya, and K. Aoyama, “Generative AI Driven Clinical Drug Development,” Japanese Journal of Clinical Pharmacology and Therapeutics, 2025, https://dx.doi.org/10.3999/jscpt.56.2_109
- A. Barcaui and A. Monat, “Who is better in project planning? Generative artificial intelligence or project managers?,” Project Leadership and Society, vol. 4, 2023. 10.1016/j.plas.2023.100101
- A. Bahi, J. Gharib, and Y. Gahi, “Integrating Generative AI for Advancing Agile Software Development and Mitigating Project Management Challenges,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 1, 2024, https://dx.doi.org/10.14569/IJACSA.2024.0150306
- Z. Alliata, T. Singhal, and A.-M. Bozagiu, “The AI Scrum Master: Using Large Language Models (LLMs) to Automate Agile Project Management Tasks,” in Lect. Notes Bus. Inf. Process., 2025, https://dx.doi.org/10.1007/978-3-031-72781-8_12
- M. AbuAlfateh, M. Ali, and M. Messaadia, “Establishing Key Performance Indicators for Human-Generative AI Collaboration,” Studies in Big Data, vol. 110, 2025, https://dx.doi.org/10.1007/978-3-031-83911-5_42
- V. Bilgram and F. Laarmann, “Accelerating Innovation With Generative AI: AI-Augmented Digital Prototyping and Innovation Methods,” IEEE Eng. Manag. Rev., vol. 51, no. 2, pp. 40–47, 2023, https://dx.doi.org/10.1109/EMR.2023.3272799
- N. Ibadildin, Z. Kenzhin, G. Yeshenkulova, and A. Kadyrova, “Artificial Intelligence in Project Management: A Bibliometric Analysis,” Problems and Perspectives in Management, vol. 23, no. 1, pp. 130–142, 2025, https://dx.doi.org/10.21511/ppm.23(2).2025.17
- S. Salimimoghadam, A. N. Ghanbaripour, R. J. Tumpa, and M. Skitmore, “The Rise of Artificial Intelligence in Project Management: A Systematic Literature Review of Current Opportunities, Enablers, and Barriers,” Buildings, vol. 15, no. 2, 2025. https://dx.doi.org/10.3390/buildings15071130
- O. Nikiforova, J. Grabis, O. Pastor, K. Babris, M. K. Miļūne, and R. Bobkovs, “Model-Based Methodology for Development of IT Project Management Plan and Scope Using Artificial Intelligence: Project in Progress,” in Proc. 19th Int. Conf. on Research Challenges in Information Science (RCIS), CEUR Workshop Proc., 2025 (in press).
- J. White, C. Kirchner, T. Paschal, S. Hays, A. Kazerouni, T. Mytkowicz, and M. Monperrus, “A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT,” arXiv preprint https://arxiv.org/abs/2302.11382, 2023, https://dx.doi.org/10.48550/arXiv.2302.11382
- P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing,” ACM Comput. Surv., vol. 55, no. 9, Art. no. 195, pp. 1–35, Sep. 2023, https://dx.doi.org/10.1145/3560815
- O. Nikiforova, K. Babris, U. Karlovs-Karlovskis, M. Narigina, A. Romanovs, A. Jansone, J. Grabis, and O. Pastor, “Model Transformations Used in IT Project Initial Phases: Systematic Literature Review,” Computers, vol. 14, no. 2, p. 40, 2025, https://dx.doi.org/10.3390/computers14020040
- O. Nikiforova, K. Babris, M. K. Miļūne, N. Tanguturi, and Ó. Pastor, “Key Artefacts in the Initial Phases of IT Project Management: Systematic Mapping Study,” in Proc. 20th Int. Conf. Evaluation of Novel Approaches to Software Engineering (ENASE), SciTePress, 2025, pp. 773–781, https://dx.doi.org/10.5220/0013471000003928
- A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design Science in Information Systems Research,” *MIS Quarterly*, vol. 28, no. 1, pp. 75–105, 2004, https://dx.doi.org/10.2307/25148625.
- M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engineering in Practice, 2nd ed. Cham, Switzerland: Springer, 2017.
- O. Pastor and J. Molina, Model-Driven Architecture in Practice: A Software Production Environment Based on Conceptual Modeling. Berlin/Heidelberg, Germany: Springer, 2007. [Online]. Available: https://doi.org/10.1007/978-3-540-71868-0
- O. Nikiforova, M. K. Miļūne, K. Babris, and O. Pastor, “Generation of IT Project Documentation Elements from a Model Transformation Chain,” in Proc. Int. Conf. on Software Technologies (ICSOFT), 2025, pp. 1–10, DOI: 10.5220/0013568300003964
- Agile Manifesto (2001) https://agilemanifesto.org/
- ISO/IEC/IEEE, Systems and software engineering — Life cycle processes — Requirements engineering, ISO/IEC/IEEE 29148:2018, International Organization for Standardization, Geneva, Switzerland, 2018
- ISO/IEC/IEEE, Systems and software engineering — Life cycle processes — Project management, ISO/IEC/IEEE 16326:2019, International Organization for Standardization, Geneva, Switzerland, 2019
- ISO, Project, programme and portfolio management — Guidance on project management, ISO 21502:2020, International Organization for Standardization, Geneva, Switzerland, 2020.
- P. Bourque and R. E. Fairley, Eds., Guide to the Software Engineering Body of Knowledge (SWEBOK Guide), Version 4.0, IEEE Computer Society, 2024. [Online]. Available: https://www.computer.org/education/bodies-of-knowledge/software-engineering
- Project Management Institute, A Guide to the Project Management Body of Knowledge (PMBOK® Guide), 7th ed., Newtown Square, PA, USA: PMI, 2021
- O. Nikiforova, M. Kirikova, and N. Pavlova, “Two-hemisphere driven approach: Application for knowledge modeling,” in Proc. 7th Int. Baltic Conf. Databases and Information Systems, 2006, pp. 244–250, art. no. 1678503. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34250753483
- O. Nikiforova and K. Gusarovs, “Comparison of BrainTool to other UML modeling and model transformation tools”, AIP Conf. Proc., vol. 1863, art. no. 330005, 2017. https://dx.doi.org/10.1063/1.4992503
- J. He, M. Rungta, D. Koleczek, A. Sekhon, F. X. Wang, and S. Hasan, “Does Prompt Formatting Have Any Impact on LLM Performance?,” arXiv preprint https://arxiv.org/abs/2411.10541, 2024, https://dx.doi.org/10.48550/arXiv.2411.10541
- A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe, et al., “Self-Refine: Iterative Refinement with Self-Feedback,” arXiv preprint https://arxiv.org/abs/2303.17651, 2023, https://dx.doi.org/10.48550/arXiv.2303.17651
- OpenAI, ChatGPT (May 2024 version) [Large Language Model]. Available: https://chat.openai.com/
- T. Bao, J. Yang, Y. Yang, and Y. Yin, "RM2Doc: A tool for automatic generation of requirements documents from requirements models," in Proc. ACM/IEEE 44th Int. Conf. Softw. Eng.: Companion Proc. (ICSE ’22), New York, NY, USA, 2022, pp. 188–192, https://dx.doi.org/10.1145/3510454.3516850.
- Vectara. (2024). Hallucination leaderboard [Computer software]. GitHub. https://github.com/vectara/hallucination-leaderboard