Logo PTI Logo icetasi

Proceedings of the 2025 International Conference on Engineering, Technology and Applied Science Innovations

Annals of Computer Science and Information Systems, Volume 46

Study on the influence of heat treatment on the mechanical tensile characteristics of parts additively manufactured by thermoplastic extrusion of PETG

, , ,

DOI: http://dx.doi.org/10.15439/2025I26

Citation: Proceedings of the 2025 International Conference on Engineering, Technology and Applied Science Innovations, Gerasimos Pylarinos, Christos P. Antonopoulos, George Syrrokostas, Panteleimon Apostolopoulos, Stratos David (eds). ACSIS, Vol. 46, pages 6167 ()

Full text

Abstract. The paper presents the results of research on the influence of heat treatment on the mechanical tensile characteristics of parts manufactured additively by thermoplastic extrusion of PETG. For the study, 27 tensile specimens were made from PETG filament on the Anycubic 4Max Pro 2.0 3D printer, using layer height values ​​Lh of 0.10; 0.15 and 0.20 mm and filling percentages Ip of 50\%, 75\% and 100\%. The printed specimens were subjected to a heat treatment at 75 °C for 180 minutes. Subsequently, they were tested in tension on the Barrus White 20 kN universal machine. The results showed that the heat treatment generated an increase in tensile strength with values ​​ranging between 5.90\% and 17.88\% compared to PETG specimens manufactured additively without heat treatment.

References

  1. K. A. Bello and R. W. Maladzhi, “Innovative and best practices in sustainable strategies for waste reduction in additive manufacturing,” Hybrid Advances, vol. 11, p. 100527, Dec. 2025, https://doi.org/10.1016/j.hybadv.2025.100527.
  2. R. M. Shiferaw, K. L. Debela, and C. A. Kero, “Effect of green leadership on sustainable performance of large manufacturing firms using leader innovation behaviour as a mediating role: Evidence from large manufacturing firm in Ethiopia,” Sustainable Futures, vol. 10, p. 101005, Dec. 2025, https://doi.org/10.1016/j.sftr.2025.101005.
  3. W. Shi, L. Ying, G. Ma, Y. Niu, Y. Lv, and X. Xu, “Intelligent manufacturing, media attention, and sustainable development performance,” International Review of Financial Analysis, vol. 106, p. 104481, Oct. 2025, https://doi.org/10.1016/j.irfa.2025.104481.
  4. R. Gul, X. Cao, R. A. Mohammad, A. Rauf, and S. Ullah khan, “Sustainable Entrepreneurial Dynamics in Manufacturing: Innovative Business Models and Social Value Creation in Chinese Enterprises,” Sustainable Futures, p. 101022, Jul. 2025, https://doi.org/10.1016/j.sftr.2025.101022.
  5. A. D. Jayal, F. Badurdeen, O. W. Dillon, and I. S. Jawahir, “Sustainable manufacturing: Modeling and optimization challenges at the product, process and system levels,” CIRP Journal of Manufacturing Science and Technology, vol. 2, no. 3, pp. 144–152, Jan. 2010, https://doi.org/10.1016/j.cirpj.2010.03.006.
  6. M. A. Rosen and H. A. Kishawy, “Sustainable Manufacturing and Design: Concepts, Practices and Needs,” Sustainability, vol. 4, no. 2, pp. 154–174, Feb. 2012, https://doi.org/10.3390/su4020154.
  7. Y. H. Dang et al., “Conversion of an FDM printer to direct ink write 3D bioprinter utilizing an efficient and cost-effective extrusion system,” Annals of 3D Printed Medicine, vol. 19, p. 100212, Aug. 2025, https://doi.org/10.1016/j.stlm.2025.100212.
  8. R. Kumaresan, K. Kadirgama, M. Samykano, W. S. W. Harun, A. Thirugnanasambandam, and K. Kanny, “In-depth study and optimization of process parameters to enhance tensile and compressive strengths of PETG in FDM technology,” Journal of Materials Research and Technology, vol. 37, pp. 397–416, Jul. 2025, https://doi.org/10.1016/j.jmrt.2025.06.013.
  9. L. Changhui et al., “Balanced Optimization of Dimensional Accuracy and Printing Efficiency in FDM Based on Data-Driven Modeling,” Additive Manufacturing Frontiers, vol. 4, no. 2, p. 200220, Jun. 2025, https://doi.org/10.1016/j.amf.2025.200220.
  10. I. J. Solomon, P. Sevvel, and J. Gunasekaran, “A review on the various processing parameters in FDM,” Materials Today: Proceedings, vol. 37, pp. 509–514, Jan. 2021, https://doi.org/10.1016/j.matpr.2020.05.484.
  11. J. Torres, J. Cotelo, J. Karl, and A. P. Gordon, “Mechanical Property Optimization of FDM PLA in Shear with Multiple Objectives,” JOM, vol. 67, no. 5, pp. 1183–1193, May 2015, https://doi.org/10.1007/s11837-015-1367-y.
  12. S. Hartomacıoğlu, M. Oksuz, A. Ekinci, and M. Ates, “Optimization of Produced Parameters for PA6/PA6GF30 Composite Produced by 3D Printing with Novel Knitting Method,” Polymers, vol. 17, no. 12, p. 1590, Jan. 2025, https://doi.org/10.3390/polym17121590.
  13. V.-L. Trinh, T.-D. Hoang, and Q.-T. Ngo, “The Influence of Processing Parameters on the Tensile Strength of 3D Printed Products”, Eng. Technol. Appl. Sci. Res., vol. 15, no. 3, pp. 22663–22668, Jun. 2025.
  14. O. A. Mohamed, S. H. Masood, J. L. Bhowmik, M. Nikzad, and J. Azadmanjiri, “Effect of Process Parameters on Dynamic Mechanical Performance of FDM PC/ABS Printed Parts Through Design of Experiment,” Journal of Materials Engineering and Performance, vol. 25, no. 7, pp. 2922–2935, Jul. 2016, https://doi.org/10.1007/s11665-016-2157-6.
  15. D. Popescu, A. Zapciu, C. Amza, F. Baciu, and R. Marinescu, “FDM process parameters influence over the mechanical properties of polymer specimens: A review,” Polymer Testing, vol. 69, pp. 157–166, Aug. 2018, https://doi.org/10.1016/j.polymertesting.2018.05.020.
  16. R. Patel, C. Desai, S. Kushwah, and M. H. Mangrola, “A review article on FDM process parameters in 3D printing for composite materials,” Materials Today: Proceedings, vol. 60, pp. 2162–2166, Jan. 2022, https://doi.org/10.1016/j.matpr.2022.02.385.
  17. B. Mallikarjuna, P. Bhargav, S. Hiremath, K. G. Jayachristiyan, and N. Jayanth, “A review on the melt extrusion-based fused deposition modeling (FDM): background, materials, process parameters and military applications,” International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 19, no. 2, pp. 651–665, Feb. 2025, https://doi.org/10.1007/s12008-023-01354-0.
  18. I. Plamadiala, C. Croitoru, M. A. Pop, and I. C. Roata, “Enhancing Polylactic Acid (PLA) Performance: A Review of Additives in Fused Deposition Modelling (FDM) Filaments,” Polymers, vol. 17, no. 2, p. 191, Jan. 2025, https://doi.org/10.3390/polym17020191.
  19. X. Zhai, T. Corre, and V. Lazarus, “A FDM-based experimental benchmark for evaluating quasistatic crack propagation in anisotropic linear elastic materials,” Engineering Fracture Mechanics, vol. 324, p. 111175, Jul. 2025, https://doi.org/10.1016/j.engfracmech.2025.111175.
  20. R. Kumaresan, M. Samykano, K. Kadirgama, Dr. A. Pandey, and Prof. Dr. Md. M. Rahman, “Effects of printing parameters on the mechanical characteristics and mathematical modeling of FDM-printed PETG,” The International Journal of Advanced Manufacturing Technology, vol. 128, pp. 1–19, Aug. 2023, https://doi.org/10.1007/s00170-023-12155-w.
  21. A. Özen, B. E. Abali, C. Völlmecke, J. Gerstel, and D. Auhl, “Exploring the Role of Manufacturing Parameters on Microstructure and Mechanical Properties in Fused Deposition Modeling (FDM) Using PETG,” Applied Composite Materials, vol. 28, no. 6, pp. 1799–1828, Dec. 2021, https://doi.org/10.1007/s10443-021-09940-9.
  22. A. Szust and G. Adamski, “Using thermal annealing and salt remelting to increase tensile properties of 3D FDM prints,” Engineering Failure Analysis, vol. 132, p. 105932, Feb. 2022, https://doi.org/10.1016/j.engfailanal.2021.105932.
  23. Y. He, M. Shen, Q. Wang, T. Wang, and X. Pei, “Effects of FDM parameters and annealing on the mechanical and tribological properties of PEEK,” Composite Structures, vol. 313, p. 116901, Jun. 2023, https://doi.org/10.1016/j.compstruct.2023.116901.
  24. S. Valvez, A. P. Silva, P. N. B. Reis, and F. Berto, “Annealing effect on mechanical properties of 3D printed composites,” Procedia Structural Integrity, vol. 37, pp. 738–745, Jan. 2022, https://doi.org/10.1016/j.prostr.2022.02.004.
  25. E. Kösemen, M. Bakkal, and A. T. Kuzu, “Enhancing Mechanical Performance of FDM-Printed ABS Parts Through Annealing Optimization,” Polymer Engineering & Science, vol. n/a, no. n/a, https://doi.org/10.1002/pen.70008.
  26. R. A. Wach, P. Wolszczak, and A. Adamus-Wlodarczyk, “Enhancement of Mechanical Properties of FDM-PLA Parts via Thermal Annealing,” Macromolecular Materials and Engineering, vol. 303, no. 9, p. 1800169, 2018, https://doi.org/10.1002/mame.201800169.
  27. J. R. Stojković et al., “An Experimental Study on the Impact of Layer Height and Annealing Parameters on the Tensile Strength and Dimensional Accuracy of FDM 3D Printed Parts,” Materials, vol. 16, no. 13, p. 4574, Jan. 2023, https://doi.org/10.3390/ma16134574.
  28. D. G. Zisopol, A. I. Portoaca, and M. Tanase, “Improving the Impact Resistance through Annealing in PLA 3D Printed Parts”, Eng. Technol. Appl. Sci. Res., vol. 13, no. 5, pp. 11768–11772, Oct. 2023.
  29. D. G. Zisopol, "The Place and Role of Value Analysis in the Restructuring of Production (Case Study)," Economic Insights - Trends and Challenges, vol. I, no. 4/2012, pp. 27–35, 2012.
  30. Available online: ISO 527-1:2019, Plastics — Determination of tensile properties, https://www.iso.org/standard/527-1, (accesed January 24, 2025).
  31. Availabe online: https://www.minitab.com/en-us/, (accessed June. 5, 2025).
  32. D. G. Zisopol, M. Minescu, and D. V. Iacob, “A Study on the Influence of FDM Parameters on the Tensile Behavior of Samples made of PET-G”, Eng. Technol. Appl. Sci. Res., vol. 14, no. 2, pp. 13487–13492, Apr. 2024.