Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 11

Proceedings of the 2017 Federated Conference on Computer Science and Information Systems

Block Subspace Projection Preconditioned Conjugate Gradient Method for Structural Modal Analysis

,

DOI: http://dx.doi.org/10.15439/2017F64

Citation: Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 11, pages 497506 ()

Full text

Abstract. The method for extracting natural vibration frequencies and modes of design models arising when the finite element method is applied to the problems of structural and solid mechanics is proposed. This approach is intended to be used on multicore SMP computers and is an alternative to the conventional block Lanczos and subspace iteration methods widely used in modern FEA software. We present the main idea of the method as well as the parallel fast block incomplete factorization approach for creating efficient preconditioning, the shift technique and other details accelerating the solution and improving the numerical stability. Real-life examples are taken from the computational practice of SCAD Soft IT company and approve the efficiency of the proposed method.

References

  1. P. R. Amestoy, I. S. Duff, J-Y. L'Excellent, “Multifrontal parallel distributed symmetric and unsymmetric solvers,” Comput. Meth. Appl. Mech. Eng., 184, pp. 501–520, 2000, https://doi.org/10.1016/S0045-7825(99)00242-X.
  2. V. E. Bulgakov, M. E. Belyi and K. M. Mathisen, “Multilevel aggregation method for solving large-scale generalized eigenvalue problems in structural dynamics,” Int. J. Numer. Methods Eng., vol. 40. pp. 453 – 471, 1997, http://http://dx.doi.org/10.1002/(SICI)1097-0207(19970215)40:33.0.CO;2-2.
  3. Y. T. Feng and D. R. J. Owen, “Conjugate gradient methods for solving the smallest eigenpair of large symmetric eigenvalue problems,” Int. J. Numer. Methods Eng., vol. 39. pp. 2209 – 2229, 1996, http://http://dx.doi.org/10.1002/(SICI)1097-0207(19960715)39:13<2209::AID-NME951>3.0.CO;2-R.
  4. A. George, J. W. H. Liu, Computer solution of sparse positive definite systems. New Jersey : Prentice-Hall, Inc. Englewood Cliffs, 1981.
  5. S. Yu. Fialko, “Natural vibrations of complex bodies,” Int. Applied Mechanics, vol. 40, no. 1, pp. 83 – 90, 2004, http://http://dx.doi.org/10.1023/B:INAM.0000023814.13805.34.
  6. S. Fialko, “Aggregation Multilevel Iterative Solver for Analysis of Large-Scale Finite Element Problems of Structural Mechanics: Linear Statics and Natural Vibrations”, in PPAM 2001, R. Wyrzykowski et al. (Eds.), LNCS 2328, Springer-Verlag Berlin Heidelberg, 2002, pp. 663–670, http://http://dx.doi.org/10.1007/1-4020-5370-3_41.
  7. S. Yu. Fialko, E. Z. Kriksunov and V. S. Karpilovskyy, “A block Lanczos method with spectral transformations for natural vibrations and seismic analysis of large structures in SCAD software,” in Proc. CMM-2003 – Computer Methods in Mechanics, Gliwice, Poland, 2003, pp. 129 —130.
  8. S. Yu. Fialko, “Iterative methods for solving large-scale problems of structural mechanics using multi-core computers,” Archives of Civil and Mechanical Engineering, vol. 14, pp. 190 – 203, 2014, http:// http://dx.doi.org/10.1016/j.acme.2013.05.009.
  9. S. Yu. Fialko, F. Żegleń, “Block Preconditioned Conjugate Gradient Method for Extraction of Natural Vibration Frequencies in Structural Analysis”, Proceedings of the FedCSIS. Łódż, 2015. IEEE Xplore Digital Library, pp. 655 – 662. http://dx.doi.org/10.15439/2015F87. URL: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7321505&tag=1 .
  10. S. Yu. Fialko, F. Żegleń, “Block subspace projection PCG method for solution of natural vibration problem in structural analysis.”, Proceedings of the Federated Conference on Computer Science and Information Systems pp. 669–672. http://dx.doi.org/10.15439/2016F88. URL: http://annals-csis.org/Volume_8/pliks/88.pdf .
  11. S. Yu. Fialko, “PARFES: A method for solving finite element linear equations on multi-core computers,” Advances in Engineering software, vol. 40, no. 12, pp. 1256-1265, 2010, http:// http://dx.doi.org/10.1016/j.advengsoft.2010.09.002.
  12. S. Yu. Fialko, “Parallel direct solver for solving systems of linear equations resulting from finite element method on multi-core desktops and workstations”, Computers and Mathematics with Applications 70, pp. 2968–2987, 2015 http://dx.doi.org/10.1016/j.camwa.2015.10.009
  13. G. Gambolati, G. Pini and F. Sartoretto, “An improved iterative optimization technique for the leftmost eigenpairs of large symmetric matrices,“ J. Comp. Phys., no 74, pp. 41 – 60, 1988, http://http://dx.doi.org/10.1016/0021-9991(88)90067-8.
  14. C. K. Gan, P. D. Haynes and M. C. Payne, “Preconditioned conjugate gradient method for sparse generalized eigenvalue problem in electronic structure calculations,” Computer Physics Communications, vol 134, nr. 1, pp. 33 – 40, 2001, http://http://dx.doi.org/10.1016/S0010-4655(00)00188-0.
  15. V. Hernbadez, J. E. Roman, A. Tomas and V. Vidal, “A survey a software for sparse eigenvalue problems,” Universitat Politecnica De Valencia, SLEPs technical report STR-6, 2009.
  16. G. Karypis and V. Kumar, “METIS: Unstructured Graph Partitioning and Sparse Matrix Ordering System,”. Technical report, Department of Computer Science, University of Minnesota, Minneapolis, 1995.
  17. A. V. Knyazev and K. Neymayr, “Efficient solution of symmetric eigenvalue problem using multigrid preconditioners in the locally optimal block conjugate gradient method,” Electronic Transactions on Numerical Analysis, vol. 15, pp. 38 – 55, 2003. URL: https://eudml.org/doc/123270.
  18. A. V. Knyazev, M. E. Argentati, I. Lashuk, E.E. Ovtchinnikov, “Block Locally Optimal Preconditioned Eigenvalue Solvers (BLOPEX) in HYPRE and PETSC”. URL: http://arxiv.org/pdf/0705.2626.pdf.
  19. R. B. Morgan, “Preconditioning eigenvalues and some comparison of solvers,” Journal of computational and applied mathematics, vol. 123, pp. 101 – 115, 2000, http://http://dx.doi.org/10.1016/S0377-0427(00)00395-2.
  20. M. Papadrakakis, “Solution of partial eigenproblem by iterative methods,” Int. J. Num. Meth Eng., vol. 20. pp. 2283—2301, 1984, http://http://dx.doi.org/10.1002/nme.1620201209.
  21. A. V. Perelmuter, S. Yu. Fialko, “Problems of computational mechanics relate to finite-element analysis of structural constructions,” International Journal for Computational Civil and Structural Engineering, vol. 1, no 2, 2005, pp. 72 – 86.
  22. Y. Saad, Numerical methods for large eigenvalue problems, Revised edition, Classics in applied mathematics. SIAM, 2011, http://dx.doi.org/10.1137/1.9781611970739.
  23. O. Schenk, K. Gartner, “Two-level dynamic scheduling in PARDISO: Improved scalability on shared memory multiprocessing systems,” Parallel Computing, 28, pp. 187–197, 2002, https://doi.org/10.1016/S0167-8191(01)00135-1.
  24. Thread Local Storage. URL: https://msdn.microsoft.com/en-us/library/windows/desktop/ms686749(v=vs.85).aspx (Last access: 18.04.2017).
  25. S. Tomov, J. Langou, A. Canning, Lin-Wang Wang, J. Dongarra, “Conjugate-gradient eigenvalue solver in computing electronic properties of nanostructure architecture,” Int. J. Computational Science and Engineering, vol. 2, nr. 3-4, pp. 205 – 212, 2006. https://doi.org/10.1504/IJCSE.2006.012774.
  26. doclib/iss/2013/mkl/mklman/index.htm (Last access: 16.04.2015).