Logo PTI Logo FedCSIS

Proceedings of the 16th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 25

Rotation Invariance in Graph Convolutional Networks

,

DOI: http://dx.doi.org/10.15439/2021F140

Citation: Proceedings of the 16th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 25, pages 8190 ()

Full text

Abstract. Convolution filters in deep convolutional networks display rotation variant behavior. While learned invariant behavior can be partially achieved, this paper shows that current methods of utilizing rotation variant features can be improved by proposing a grid-based graph convolutional network. We demonstrate that Grid-GCN heavily outperforms existing models on rotated images, and through a set of ablation studies, we show how the performance of Grid-GCN implies that there exist more performant methods to utilize fundamentally rotation variant features and we conclude that the inherit nature of spectral graph convolutions is able to learn invariant behavior.

References

  1. A. Bochkovskiy, C. Wang, and H. M. Liao, “Yolov4: Optimal speed and accuracy of object detection,” CoRR, vol. abs/2004.10934, 2020. [Online]. Available: https://arxiv.org/abs/2004.10934
  2. L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and M. Pietikäinen, “Deep learning for generic object detection: A survey,” International Journal of Computer Vision, vol. 128, no. 2, pp. 261–318, Oct. 2019. [Online]. Available: https://doi.org/10.1007/s11263-019-01247-4
  3. J. Kim, W. Jung, H. Kim, and J. Lee, “Cycnn: A rotation invariant cnn using polar mapping and cylindrical convolution layers,” 2020.
  4. D. Marcos, M. Volpi, and D. Tuia, “Learning rotation invariant convolutional filters for texture classification,” 2016 23rd International Conference on Pattern Recognition (ICPR), Dec 2016. [Online]. Available: http://dx.doi.org/10.1109/ICPR.2016.7899932
  5. W. Shi and R. Rajkumar, “Point-GNN: Graph neural network for 3d object detection in a point cloud,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Jun. 2020. [Online]. Available: https://doi.org/10.1109/cvpr42600.2020.00178
  6. A. Luo, X. Li, F. Yang, Z. Jiao, H. Cheng, and S. Lyu, “Cascade graph neural networks for RGB-D salient object detection,” in Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XII, ser. Lecture Notes in Computer Science, A. Vedaldi, H. Bischof, T. Brox, and J. Frahm, Eds., vol. 12357. Springer, 2020, pp. 346–364. [Online]. Available: https://doi.org/10.1007/978-3-030-58610-2_21
  7. Y. Wang, K. Kitani, and X. Weng, “Joint object detection and multi-object tracking with graph neural networks,” in Proceedings of (ICRA) International Conference on Robotics and Automation, May 2021.
  8. A. O. Salau and S. Jain, “Feature extraction: A survey of the types, techniques, applications,” in 2019 International Conference on Signal Processing and Communication (ICSC). IEEE, Mar. 2019. [Online]. Available: https://doi.org/10.1109/icsc45622.2019.8938371
  9. S. Khalid, T. Khalil, and S. Nasreen, “A survey of feature selection and feature extraction techniques in machine learning,” in 2014 Science and Information Conference. IEEE, Aug. 2014. [Online]. Available: https://doi.org/10.1109/sai.2014.6918213
  10. Z. Chen, X. Jin, B. Zhao, X. Wei, and Y. Guo, “Hierarchical context embedding for region-based object detection,” in Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XXI, ser. Lecture Notes in Computer Science, A. Vedaldi, H. Bischof, T. Brox, and J. Frahm, Eds., vol. 12366. Springer, 2020, pp. 633–648. [Online]. Available: https://doi.org/10.1007/978-3-030-58589-1_38
  11. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd: Single shot multibox detector,” Lecture Notes in Computer Science, p. 21–37, 2016. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-46448-0_2
  12. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Jun. 2016. [Online]. Available: https://doi.org/10.1109/cvpr.2016.90
  13. D. Rukhovich, K. Sofiiuk, D. Galeev, O. Barinova, and A. Konushin, “Iterdet: Iterative scheme for object detection in crowded environments,” in Structural, Syntactic, and Statistical Pattern Recognition - Joint IAPR International Workshops, S+SSPR 2020, Padua, Italy, January 21-22, 2021, Proceedings, ser. Lecture Notes in Computer Science, A. Torsello, L. Rossi, M. Pelillo, B. Biggio, and A. Robles-Kelly, Eds., vol. 12644. Springer, 2020, pp. 344–354. [Online]. Available: https://doi.org/10.1007/978-3-030-73973-7_33
  14. H. Touvron, A. Vedaldi, M. Douze, and H. Jégou, “Fixing the train-test resolution discrepancy,” in Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, Eds., 2019, pp. 8250–8260. [Online]. Available: https://proceedings.neurips.cc/paper/2019/hash/d03a857a23b5285736c4d55e0bb067c8-Abstract.html
  15. Z. Lu, X. Jiang, and A. Kot, “Deep coupled ResNet for low-resolution face recognition,” IEEE Signal Processing Letters, vol. 25, no. 4, pp. 526–530, Apr. 2018. [Online]. Available: https://doi.org/10.1109/lsp.2018.2810121
  16. M. Kawulok, P. Benecki, S. Piechaczek, K. Hrynczenko, D. Kostrzewa, and J. Nalepa, “Deep learning for multiple-image super-resolution,” IEEE Geoscience and Remote Sensing Letters, vol. 17, no. 6, p. 1062–1066, Jun 2020. [Online]. Available: http://dx.doi.org/10.1109/LGRS.2019.2940483
  17. A. Zhou, Y. Ma, Y. Li, X. Zhang, and P. Luo, “Towards improving generalization of deep networks via consistent normalization,” CoRR, vol. abs/1909.00182, 2019. [Online]. Available: http://arxiv.org/abs/1909.00182
  18. T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO: common objects in context,” in Computer Vision - ECCV 2014 - 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V, ser. Lecture Notes in Computer Science, D. J. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds., vol. 8693. Springer, 2014, pp. 740–755. [Online]. Available: https://doi.org/10.1007/978-3-319-10602-1_48
  19. R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014. IEEE Computer Society, 2014, pp. 580–587. [Online]. Available: https://doi.org/10.1109/CVPR.2014.81
  20. S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-time object detection with region proposal networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, 2017. [Online]. Available: https://doi.org/10.1109/TPAMI.2016.2577031
  21. J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 2016, pp. 779–788. [Online]. Available: https://doi.org/10.1109/CVPR.2016.91
  22. A. Tao, K. Sapra, and B. Catanzaro, “Hierarchical multi-scale attention for semantic segmentation,” CoRR, vol. abs/2005.10821, 2020. [Online]. Available: https://arxiv.org/abs/2005.10821
  23. H. Zhang, C. Wu, Z. Zhang, Y. Zhu, Z. Zhang, H. Lin, Y. Sun, T. He, J. Mueller, R. Manmatha, M. Li, and A. J. Smola, “Resnest: Split-attention networks,” CoRR, vol. abs/2004.08955, 2020. [Online]. Available: https://arxiv.org/abs/2004.08955
  24. Y. Yuan, X. Chen, and J. Wang, “Object-contextual representations for semantic segmentation,” in Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part VI, ser. Lecture Notes in Computer Science, A. Vedaldi, H. Bischof, T. Brox, and J. Frahm, Eds., vol. 12351. Springer, 2020, pp. 173–190. [Online]. Available: https://doi.org/10.1007/978-3-030-58539-6_11
  25. J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun, “Graph neural networks: A review of methods and applications,” AI Open, vol. 1, pp. 57–81, 2020. [Online]. Available: https://doi.org/10.1016/j.aiopen.2021.01.001
  26. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” in 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. [Online]. Available: https://openreview.net/forum?id=SJU4ayYgl
  27. J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally connected networks on graphs,” in 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2014. [Online]. Available: http://arxiv.org/abs/1312.6203
  28. Q. Liu, M. Kampffmeyer, R. Jenssen, and A. Salberg, “SCG-Net: Self-Constructing Graph Neural Networks for Semantic Segmentation,” CoRR, vol. abs/2009.01599, 2020. [Online]. Available: https://arxiv.org/abs/2009.01599
  29. M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral filtering,” in Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and R. Garnett, Eds., 2016, pp. 3837–3845. [Online]. Available: https://proceedings.neurips.cc/paper/2016/hash/04df4d434d481c5bb723be1b6df1ee65-Abstract.html
  30. D. Arya, H. Maeda, S. K. Ghosh, D. Toshniwal, H. Omata, T. Kashiyama, and Y. Sekimoto, “Global road damage detection: State-of-the-art solutions,” in IEEE International Conference on Big Data, Big Data 2020, Atlanta, GA, USA, December 10-13, 2020, X. Wu, C. Jermaine, L. Xiong, X. Hu, O. Kotevska, S. Lu, W. Xu, S. Aluru, C. Zhai, E. Al-Masri, Z. Chen, and J. Saltz, Eds. IEEE, 2020, pp. 5533–5539. [Online]. Available: https://doi.org/10.1109/BigData50022.2020.9377790
  31. D. Chicco and G. Jurman, “The advantages of the matthews correlation coefficient (MCC) over f1 score and accuracy in binary classification evaluation,” BMC Genomics, vol. 21, no. 1, Jan. 2020. [Online]. Available: https://doi.org/10.1186/s12864-019-6413-7
  32. S. Boughorbel, F. Jarray, and M. El-Anbari, “Optimal classifier for imbalanced data using matthews correlation coefficient metric,” PLOS ONE, vol. 12, no. 6, p. e0177678, Jun. 2017. [Online]. Available: https://doi.org/10.1371/journal.pone.0177678
  33. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library. pdf
  34. M. Fey and J. E. Lenssen, “Fast graph representation learning with pytorch geometric,” CoRR, vol. abs/1903.02428, 2019. [Online]. Available: http://arxiv.org/abs/1903.02428
  35. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale machine learning,” in Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, ser. OSDI’16. USA: USENIX Association, 2016, p. 265–283.
  36. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available: http://arxiv.org/abs/1412.6980
  37. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http://www.deeplearningbook.org.
  38. J. Gao, T. Zhang, and C. Xu, “Graph convolutional tracking,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.
  39. A. Nicolicioiu, I. Duta, and M. Leordeanu, “Recurrent space-time graph neural networks,” in Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/file/383beaea4aa57dd8202dbff464fee3af-Paper.pdf
  40. Y. Chen, Y. Kalantidis, J. Li, S. Yan, and J. Feng, “A2-nets: Double attention networks,” CoRR, vol. abs/1810.11579, 2018. [Online]. Available: http://arxiv.org/abs/1810.11579
  41. A. Auten, M. Tomei, and R. Kumar, “Hardware acceleration of graph neural networks,” in 2020 57th ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1–6.