Enabling Autonomous Medical Image Data Annotation: A human-in-the-loop Reinforcement Learning Approach
Leonardo da Cruz, César Sierra-Franco, Greis Silva-Calpa, Alberto Raposo
DOI: http://dx.doi.org/10.15439/2021F86
Citation: Proceedings of the 16th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 25, pages 271–279 (2021)
Abstract. We introduce a new approach based on Deep Reinforcement Learning to cost-effective annotation in a set of medical data. Our approach consists of a virtual agent to automatically label training data, and a human-in-the-loop to assist in the training of the agent. We implemented the Deep Q-Network algorithm to create the virtual agent and adopted the method mentioned above, which employs human advice to the virtual agent. Our approach was evaluated on a set of medical X-ray data in different use cases, where the agent was required to create new annotations in the form of bounding boxes from unlabeled data.
References
- G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Medical image analysis, vol. 42, pp. 60–88, 2017. [Online]. Available: https://doi.org/10.1016/j.media.2017.07.005
- A. Esteva, K. Chou, S. Yeung, N. Naik, A. Madani, A. Mottaghi, Y. Liu, E. Topol, J. Dean, and R. Socher, “Deep learning-enabled medical computer vision,” NPJ digital medicine, vol. 4, no. 1, pp. 1–9, 2021. [Online]. Available: https://doi.org/10.1038/s41746-020-00376-2
- A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun, “Dermatologist-level classification of skin cancer with deep neural networks,” nature, vol. 542, no. 7639, pp. 115–118, 2017. [Online]. Available: https://doi.org/10.1038/nature21056
- J. Yang, J. Fan, Z. Wei, G. Li, T. Liu, and X. Du, “Cost-effective data annotation using game-based crowdsourcing,” Proceedings of the VLDB Endowment, vol. 12, no. 1, pp. 57–70, 2018. [Online]. Available: https://doi.org/10.14778/3275536.3275541
- R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.
- V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint https://arxiv.org/abs/1312.5602, 2013.
- V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control through deep reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–533, 2015. [Online]. Available: https://doi.org/10.1038/nature14236
- J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine, “How to train your robot with deep reinforcement learning: lessons we have learned,” The International Journal of Robotics Research, vol. 40, no. 4-5, pp. 698–721, 2021. [Online]. Available: https://doi.org/10.1177/0278364920987859
- B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and P. Pérez, “Deep reinforcement learning for autonomous driving: A survey,” IEEE Transactions on Intelligent Transportation Systems, 2021. http://dx.doi.org/10.1109/TITS.2021.3054625
- T. Tajmajer, “Modular multi-objective deep reinforcement learning with decision values,” in 2018 Federated conference on computer science and information systems (FedCSIS). IEEE, 2018, pp. 85–93. [Online]. Available: http://dx.doi.org/10.15439/2018F231
- L. Sun and Y. Gong, “Active learning for image classification: A deep reinforcement learning approach,” in 2019 2nd China Symposium on Cognitive Computing and Hybrid Intelligence (CCHI). IEEE, 2019. http://dx.doi.org/10.1109/CCHI.2019.8901911 pp. 71–76.
- Z. Liu, J. Wang, S. Gong, H. Lu, and D. Tao, “Deep reinforcement active learning for human-in-the-loop person re-identification,” in Proceedings of the IEEE International Conference on Computer Vision, 2019. http://dx.doi.org/10.1109/ICCV.2019.00622 pp. 6122–6131.
- V. R. Saripalli, D. Pati, M. Potter, G. Avinash, and C. W. Anderson, “Ai-assisted annotator using reinforcement learning,” SN Computer Science, vol. 1, no. 6, pp. 1–8, 2020. [Online]. Available: https://doi.org/10.1007/s42979-020-00356-z
- J. Wang, Y. Yan, Y. Zhang, G. Cao, M. Yang, and M. K. Ng, “Deep reinforcement active learning for medical image classification,” in International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2020, pp. 33–42. [Online]. Available: https://doi.org/10.1007/978-3-030-59710-8_4
- J. Shim, S. Kang, and S. Cho, “Active learning of convolutional neural network for cost-effective wafer map pattern classification,” vol. 33, no. 2. IEEE, 2020. http://dx.doi.org/10.1109/TSM.2020.2974867 pp. 258–266.
- F.-Q. Liu and Z.-Y. Wang, “Automatic “ground truth” annotation and industrial workpiece dataset generation for deep learning,” International Journal of Automation and Computing, pp. 1–12, 2020.
- H. Liang, L. Yang, H. Cheng, W. Tu, and M. Xu, “Human-in-the-loop reinforcement learning,” in 2017 Chinese Automation Congress (CAC), 2017. http://dx.doi.org/10.1109/CAC.2017.8243575 pp. 4511–4518.
- L. Torrey and M. Taylor, “Teaching on a budget: Agents advising agents in reinforcement learning,” in Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems, 2013, pp. 1053–1060.
- Z. Lin, B. Harrison, A. Keech, and M. O. Riedl, “Explore, exploit or listen: Combining human feedback and policy model to speed up deep reinforcement learning in 3d worlds,” arXiv preprint https://arxiv.org/abs/1709.03969, 2017.
- S. Krening, “Humans teaching intelligent agents with verbal instruction,” Ph.D. dissertation, Georgia Institute of Technology, 2019.
- W. B. Knox and P. Stone, “Tamer: Training an agent manually via evaluative reinforcement,” in 2008 7th IEEE International Conference on Development and Learning. IEEE, 2008, pp. 292–297.
- R. Arakawa, S. Kobayashi, Y. Unno, Y. Tsuboi, and S.-i. Maeda, “Dqn-tamer: Human-in-the-loop reinforcement learning with intractable feedback,” arXiv preprint https://arxiv.org/abs/1810.11748, 2018.
- G. Li, B. He, R. Gomez, and K. Nakamura, “Interactive reinforcement learning from demonstration and human evaluative feedback,” in 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). IEEE, 2018. http://dx.doi.org/10.1109/ROMAN.2018.8525837 pp. 1156–1162.
- N. Navidi, “Human ai interaction loop training: New approach for interactive reinforcement learning,” arXiv preprint https://arxiv.org/abs/2003.04203, 2020.
- T. Mandel, Y.-E. Liu, E. Brunskill, and Z. Popovic, “Where to add actions in human-in-the-loop reinforcement learning.” in AAAI, 2017, pp. 2322–2328.
- N. Tajbakhsh, L. Jeyaseelan, Q. Li, J. N. Chiang, Z. Wu, and X. Ding, “Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation,” Medical Image Analysis, p. 101693, 2020. [Online]. Available: https://doi.org/10.1016/j.media.2020.101693
- J. C. Caicedo and S. Lazebnik, “Active object localization with deep reinforcement learning,” in Proceedings of the IEEE international conference on computer vision, 2015. http://dx.doi.org/10.1109/ICCV.2015.286 pp. 2488–2496.
- M. Otoofi, “Object localization using deep reinforcement learning Mohammad Otoofi,” Master’s thesis, University of Glasgow, Scotland, 2018.
- D. L. Poole and A. K. Mackworth, Artificial Intelligence: foundations of computational agents. Cambridge University Press, 2010.
- R. Padilla, S. L. Netto, and E. A. da Silva, “A survey on performance metrics for object-detection algorithms,” in 2020 International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, 2020. http://dx.doi.org/10.1109/IWSSIP48289.2020.9145130 pp. 237–242.
- H. Amin and W. J. Siddiqui, “Cardiomegaly,” StatPearls [internet], 2020.
- K. Monowar, “National institutes of health chest x-ray dataset,” May 2020. [Online]. Available: https://www.kaggle.com/khanfashee/nih-chest-x-ray-14-224x224-resized
- C. Semsarian, J. Ingles, M. S. Maron, and B. J. Maron, “New perspectives on the prevalence of hypertrophic cardiomyopathy,” Journal of the American College of Cardiology, vol. 65, no. 12, pp. 1249–1254, 2015. http://dx.doi.org/10.1016/j.jacc.2015.01.019
- B. J. Maron, J. M. Gardin, J. M. Flack, S. S. Gidding, T. T. Kurosaki, and D. E. Bild, “Prevalence of hypertrophic cardiomyopathy in a general population of young adults: echocardiographic analysis of 4111 subjects in the cardia study,” Circulation, vol. 92, no. 4, pp. 785–789, 1995. http://dx.doi.org/10.1161/01.cir.92.4.785
- M. L. Kwan, L. H. Kushi, E. Weltzien, B. Maring, S. E. Kutner, R. S. Fulton, M. M. Lee, C. B. Ambrosone, and B. J. Caan, “Epidemiology of breast cancer subtypes in two prospective cohort studies of breast cancer survivors,” Breast Cancer Research, vol. 11, no. 3, p. R31, 2009. http://dx.doi.org/10.1186/bcr2261
- M. Moghbel, C. Y. Ooi, N. Ismail, Y. W. Hau, and N. Memari, “A review of breast boundary and pectoral muscle segmentation methods in computer-aided detection/diagnosis of breast mammography,” Artificial Intelligence Review, pp. 1–46, 2019. [Online]. Available: https://doi.org/10.1007/s10462-019-09721-8
- V. Gupta, C. Taylor, S. Bonnet, L. M. Prevedello, J. Hawley, R. D. White, M. G. Flores, and B. S. Erdal, “Deep learning-based automatic detection of poorly positioned mammograms to minimize patient return visits for repeat imaging: A real-world application,” arXiv preprint https://arxiv.org/abs/2009.13580, 2020.