Recent Advances in Business Analytics. Selected papers of the 2021 KNOWCON-NSAIS workshop on Business Analytics

Annals of Computer Science and Information Systems, Volume 29

Interval-valued semantic differential in multiple criteria and multi-expert evaluation context: possible benefits and application areas

DOI: http://dx.doi.org/10.15439/2021B3

Citation: Recent Advances in Business Analytics. Selected papers of the 2021 KNOWCON-NSAIS workshop on Business Analytics, Jan Stoklasa, Pasi Luukka and Maria Ganzha (eds). ACSIS, Vol. 29, pages 5361 ()

Full text

Abstract. The paper discusses the possibilities of adapting therecently introduced interval-valued semantic differential methodto the multiple-criteria decision-making and evaluation context.It focuses on the differences and common ground of the intendeduse of the original semantic differentiation method and generalmultiple-criteria evaluation problems. The paper identifies theaspects of the interval-valued modification of the method thatcan be useful in multiple-criteria evaluation and also aspectsthat can be beneficial in the multi-expert evaluation settingand also possible limitations stemming from the transition tothe multiple-criteria (or multi-expert) evaluation context. Finallythe paper suggests potential application areas for the (interval-valued) semantic differential based methods.


  1. G. Mitra, H. J. Greenberg, F. A. Lootsma, M. J. Rickaert, and H.-J. Zimmermann, Eds., Mathematical Models for Decision Support. Berlin Heidelberg New York London Paris Tokyo: Springer-Verlag, 1988, vol. F48. ISBN 978-0387500843
  2. J. Figueira, S. Greco, and M. Ehrgott, Eds., Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, 2005. ISBN 0387230815
  3. M. Doumpos, J. R. Figueira, S. Greco, and C. Zopounidis, Eds., New Perspectives in Multiple Criteria Decision Making: Innovative Applications and Case Studies. Springer Nature Switzerland AG, 2019.
  4. G. Silahtaroglu, H. Dinçer, and S. Yüksel, Data Science and Multiple Criteria Decision Making Approaches in Finance: Applications and Methods. Cham: Springer Nature Switzerland AG, 2021.
  5. G.-H. Tzeng and K.-Y. Shen, New Concepts and Trends of Hybrid Multiple Criteria Decision Making. New York: CRC Press, 2017. ISBN 978-1-4987-7708-7
  6. C. Zopounidis and M. Doumpos, Eds., Multiple criteria decision making - Applications in Management and Engineering. Springer International Publishing AG Switzeland, 2017.
  7. M. Metfessel, “A proposal for quantitative reporting of comparative judgements,” Journal of Psychology, vol. 24, no. 2, pp. 229–235, 1947.
  8. B. F. Hobbs, “A Comparison of Weighting Methods in Power Plant Siting,” Decision Sciences, vol. 11, no. 4, pp. 725–737, 1980. http://dx.doi.org/10.1111/j.1540-5915.1980.tb01173.x
  9. T. L. Saaty, “How to Make a Decision: The Analytic Hierarchy Process,” European Journal of Operational Research, vol. 48, no. 1, pp. 9–26, 1990.
  10. L. A. Zadeh, “Similarity relations and fuzzy orderings,” Information sciences, vol. 3, no. 2, pp. 177–200, 1971.
  11. L. A. Zadeh and J. Kacprzyk, Eds., Computing with words in information/intelligent systems 2: Applications. Berlin Heidelberg GmbH: Springer-Verlag, 1999. ISBN 9783790824612
  12. J. Mingers and L. White, “A review of the recent contribution of systems thinking to operational research and management science,” European Journal of Operational Research, vol. 207, no. 3, pp. 1147–1161, 2010. http://dx.doi.org/10.1016/j.ejor.2009.12.019
  13. P. Holeček, J. Talašová, and I. Müller, “Fuzzy Methods of MultipleCriteria Evaluation and Their Software Implementation,” in Cross-Disciplinary Applications of Artificial Intelligence and Pattern Recogni- tion: Advancing Technologies, V. K. Mago and N. Bhatia, Eds., Hershey, 2012, pp. 388–411. ISBN 9781613504291
  14. Z. Gong, Y. Lin, and T. Yao, Uncertain Fuzzy Preference Relations and Their Applications. Heidelberg New York Dordrecht London: Springer-Verlag, 2013. ISBN 9783642284472
  15. A. Sen, “Behaviour and the Concept of Preference,” Economica, vol. 40, no. 159, pp. 241–259, 1973. http://dx.doi.org/10.2307/2552796
  16. Z. Xu, “A method based on linguistic aggregation operators for group decision making with linguistic preference relations,” Information Sciences, vol. 166, no. 1, pp. 19–30, oct 2004. http://dx.doi.org/10.1016/j.ins.2003.10.006
  17. E. Herrera-Viedma, J. L. García-Lapresta, J. Kacprzyk, M. Fedrizzi, H. Nurmi, and S. Zadrozny, Eds., Consensual processes. Berlin Heidelberg: Springer, 2011. ISBN 9783642133428
  18. S. Greco, B. Bouchon-Meunier, G. Coletti, M. Fedrizzi, B. Matarazzo, and R. R. Yager, Eds., Advances in Computational Intelligence: 14th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU 2012, Catania, Italy, July 9-13, 2012, Proceedings, Part IV. Heidelberg New York Dordrecht London: Springer, 2012.
  19. G. Tzeng and J. Huang, Multiple Attribute Decision Making: Methods and Applications. Boca Raton, London, New York: CRC Press, Taylor & Francis group, 2011. ISBN 978-1-4398-6157-8
  20. J. Krejčí and J. Stoklasa, “Aggregation in the analytic hierarchy process: Why weighted geometric mean should be used instead of weighted arithmetic mean,” Expert Systems with Applications, vol. 114, pp. 97–106, 2018. http://dx.doi.org/10.1016/j.eswa.2018.06.060
  21. V. Jandová, J. Krejčí, J. Stoklasa, and M. Fedrizzi, “Computing interval weights for incomplete pairwise-comparison matrices of large dimension - a weak consistency based approach,” IEEE Transactions on Fuzzy Systems, vol. 25, no. 6, pp. 1714–1728, 2017. http://dx.doi.org/10.1109/T-FUZZ.2016.2633364
  22. T. L. Saaty, “A scaling method for priorities in hierarchical structures,” Journal of Mathematical Psychology, vol. 15, no. 3, pp. 234–281, jun 1977. http://dx.doi.org/10.1016/0022-2496(77)90033-5
  23. T. Talášek and J. Stoklasa, “Ordering of fuzzy quantities with respect to a fuzzy benchmark - how the shape of the fuzzy benchmark and the choice of distance / similarity affect the ordering,” in Proceedings of the 36th International Conference on Mathematical Methods in Economics, L. Váchová and O. Kratochvíl, Eds. Jindrichuv Hradec: MatfyzPress, 2018. ISBN 978-80-7378-372-3 pp. 573–578.
  24. C. Hwang, Y. Lai, and T. Liu, “A new approach for multiple objective decision making,” Computers & Operations Research, vol. 20, no. 8, pp. 889–899, 1993. http://dx.doi.org/10.1016/0305-0548(93)90109-V
  25. L. Basile and L. D’Apuzzo, “Transitive matrices, strict preference order and ordinal evaluation operators,” Soft Computing, vol. 10, no. 10, pp. 933–940, 2006. http://dx.doi.org/10.1007/s00500-005-0020-z
  26. R. R. Yager, “An approach to ordinal decision making,” International Journal of Approximate Reasoning, vol. 12, no. 3-4, pp. 237–261, 1995.
  27. J. Stoklasa, T. Talášek, and P. Luukka, “Fuzzified Likert scales in group multiple-criteria evaluation,” in Soft Computing Applications for Group Decision-making and Consensus Modeling, M. Collan and J. Kacprzyk, Eds. Springer International Publishing AG, 2018, vol. 357, pp. 165–185. ISBN 978-3-319-60206-6
  28. G. Bojadziev and M. Bojadziev, Fuzzy logic for business, finance and management, 2nd ed. World Scientific, 2007.
  29. J. Talašová, Fuzzy metody vícekriteriálního hodnocení a rozhodování. Olomouc: Palacký University in Olomouc, 2003. ISBN 8024406144
  30. H.-J. Zimmermann, Fuzzy Set Theory and Its Applications. Boston/Dordrecht/London: Kluwer Academic Publishers, 2001. ISBN 0792374355
  31. G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Aplications. New Jersey: Prentice Hall, 1995. ISBN 0131011715
  32. M. Smithson and J. Verkuilen, Fuzzy set theory: applications in the social sciences. Thousand Oaks, London, New Delhi: Sage Publications, 2006. ISBN 076192986X
  33. V. Traneva, S. Tranev, and D. Mavrov, “Interval-Valued Intuitionistic Fuzzy Decision-Making Method using Index Matrices and Application in Outsourcing,” in Proceedings of the 16th Conference on Computer Science and Intelligence Systems, ACSIS, Vol. 25, M. Ganzha, L. Maciaszek, M. Paprzycki, and D. Ślęzak, Eds., 2021. http://dx.doi.org/10.15439/2021F77 pp. 251–254.
  34. T. T. Yaman, “Pythagorean Fuzzy Analytical Network Process (ANP) and Its Application to Warehouse Location Selection Problem,” in Proceedings of the Federated Conference on Computer Science and Information Systems, ACSIS, Vol. 21, M. Ganzha, L. Maciaszek, and M. Paprzycki, Eds., 2020. http://dx.doi.org/10.15439/2020F187 pp. 137–140.
  35. F. Herrera and E. Herrera-Viedma, “Linguistic decision analysis: steps for solving decision problems under linguistic information,” Fuzzy Sets and Systems, vol. 115, no. 1, pp. 67–82, oct 2000. http://dx.doi.org/10.1016/S0165-0114(99)00024-X
  36. J. Stoklasa, Linguistic models for decision support. Lappeenranta: Lappeenranta University of Technology, 2014. ISBN 978-952-265-686-2 (PDF)
  37. J. Kacprzyk and S. Zadrozny, “Linguistic Data Summarization: A High Scalability through the Use of Natural Language?” in Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and Design, A. Laurent and M.-J. Lesot, Eds. IGI Global, 2010, pp. 214–237.
  38. M. Delgado, J. L. Verdegay, and M. A. Vila, “Linguistic decision-making models,” International Journal of Intelligent Systems, vol. 7, no. 5, pp. 479–492, 1992. http://dx.doi.org/10.1002/int.4550070507
  39. M. Collan and J. Kacprzyk, Eds., Soft Computing Applications for Group Decision-making and Consensus Modeling. Cham: Springer international publishing AG, 2018. ISBN 978-3-319-60206-6
  40. V. Sukač, J. Talašová, and J. Stoklasa, “‘Soft’ consensus in decisionmaking model using partial goals method,” in Proceedings of the 34th International Conference on Mathematical Methods in Economics. Liberec: Technical University of Liberec, 2016. ISBN 978-80-7494-296-9 pp. 791–796.
  41. M. Fedrizzi, M. Fedrizzi, R. A. M. Pereira, and M. Brunelli, “Consensual dynamics in group decision making with triangular fuzzy numbers,” in Proceedings of the Annual Hawaii International Conference on System Sciences, 2008. http://dx.doi.org/10.1109/HICSS.2008.100. ISBN 0769530753. ISSN 15301605 pp. 1–9.
  42. A. Tversky and D. Kahneman, “Judgment under uncertainty: Heuristics and biases,” Science, vol. 185, no. 4157, pp. 1124–1131, 1974.
  43. D. Kahneman, “The Semantic Differential and the Structure of Inferences Among Attributes,” The American journal of psychology, vol. 76, no. 4, pp. 554–567, 1963.
  44. A. Tversky and D. Kahneman, “Advances in Prospect Theory: Cumulative Representation of Uncertainty,” Journal of Risk and Uncertainty, vol. 5, no. 4, pp. 297–323, 1992. http://dx.doi.org/Doi 10.1007/Bf00122574
  45. ——, “The framing of decisions and the psychology of choice.” pp. 453–458, 1981.
  46. R. P. Hämäläinen, J. Luoma, and E. Saarinen, “On the importance of behavioral operational research: The case of understanding and communicating about dynamic systems,” European Journal of Operational Research, vol. 228, no. 3, pp. 623–634, aug 2013. http://dx.doi.org/10.1016/j.ejor.2013.02.001
  47. J. Stoklasa, T. Talášek, and J. Stoklasová, “Executive summaries of uncertain values close to the gain/loss threshold - linguistic modelling perspective,” Expert Systems with Applications, vol. 145, p. 113108, 2020. http://dx.doi.org/10.1016/j.eswa.2019.113108
  48. J. Stoklasa and M. Kozlova, “What is your problem, decision maker? Do we even care anymore?” in KNOWCON 2020, Knowledge on Economics and Management, Conference Proceedings, P. Slavíčková and J. Stoklasa, Eds. Olomouc: Palacký University Olomouc, 2020. http://dx.doi.org/10.5507/ff.20.24457987. ISBN 9788024457987 pp. 208–214.
  49. A. Morreale, J. Stoklasa, and T. Talášek, “Fuzzy Grouping Variables in Economic Analysis. A Pilot Study of a Verification of a Normative Model for R&D Alliances,” Fuzzy Economic Review, vol. 21, no. 2, pp. 19–46, 2016.
  50. Y. Mitev and L. Kirilov, “Group Decision Support for e-Mail Service Optimization through Information Technology Infrastructure Library Framework,” in Proceedings of the 16th Conference on Computer Science and Intelligence Systems, ACSIS, Vol. 25, M. Ganzha, L. Maciaszek, M. Paprzycki, and D. Ślęzak, Eds., 2021. http://dx.doi.org/10.15439/2021F93 pp. 227–230.
  51. R. Calvo, S. D’Mello, J. Gratch, and A. Kappas, Eds., The Oxford Handbook of Affective Computing. Oxford University Press, jan 2015. ISBN 9780199942237
  52. C. E. Osgood, G. J. Suci, and P. H. Tannenbaum, The Measurement of Meaning. Chicago: University of Illinois Press, 1957. ISBN 0252745396
  53. J. Stoklasa, T. Talášek, and J. Stoklasová, “Reflecting emotional aspects and uncertainty in multi-expert evaluation: one step closer to a soft design-alternative evaluation methodology,” in Advances in Systematic Creativity: Creating and Managing Innovations, L. Chechurin and M. Collan, Eds. Palgrave Macmillan, 2019, pp. 299–322. ISBN 978-3-319-78074-0
  54. ——, “Semantic differential for the twenty-first century: scale relevance and uncertainty entering the semantic space,” Quality Quantity, vol. 53, no. January 2019, pp. 435–448, may 2019. http://dx.doi.org/10.1007/s11135-018-0762-1
  55. C. E. Osgood, “Semantic Differential Technique in the Comparative Study of Cultures,” American Anthropologist, vol. 66, no. 3, pp. 171–200, 1964. http://dx.doi.org/10.1515/9783110215687.109
  56. O. Friborg, M. Martinussen, and J. H. Rosenvinge, “Likert-based vs. semantic differential-based scorings of positive psychological constructs: A psychometric comparison of two versions of a scale measuring resilience,” Personality and Individual Differences, vol. 40, no. 5, pp. 873–884, 2006. http://dx.doi.org/10.1016/j.paid.2005.08.015
  57. N. Kervyn, S. T. Fiske, and V. Y. Yzerbyt, “Integrating the stereotype content model (warmth and competence) and the Osgood semantic differential (evaluation, potency, and activity),” European Journal of Social Psychology, vol. 43, no. 7, pp. 673–681, 2013. http://dx.doi.org/10.1002/ejsp.1978
  58. D. R. Heise, “Some methodological issues in semantic differential research.” Psychological Bulletin, vol. 72, no. 6, pp. 406–422, 1969. http://dx.doi.org/10.1037/h0028448
  59. J. D. Dombi and A. Kertész, “Advanced Scheduling Techniques with the Pliant System for High-Level Grid Brokering,” in Agents and Artificial Intelligence Second International Conference, ICAART 2010, J. Filipe, A. Fred, and B. Sharp, Eds. Heidelberg New York Dordrecht London: Springer, 2011, pp. 173–185. ISBN 9783642198892
  60. P. Luukka and J. Stoklasa, “Similarity based topsis with linguistic-quantifier based aggregation using owa,” in THESE PROCEEDINGS - can we cite it still? - ACSIS......, 2021.
  61. J. Stoklasová, T. Talášek, and J. Stoklasa, “Attitude-based multi-expert evaluation of design,” in Intelligent Systems and Applications in Business and Finance, P. Luukka and J. Stoklasa, Eds. Springer, 2022, p. (in press).