Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 17

Communication Papers of the 2018 Federated Conference on Computer Science and Information Systems

Automated generator for complex and realistic test data—a case study


DOI: http://dx.doi.org/10.15439/2018F214

Citation: Communication Papers of the 2018 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 17, pages 233240 ()

Full text

Abstract. Some type of tests, especially stress tests and functional tests, require a large amount of realistic test data. In this paper, we propose a tool JOP (Java Object Populator) that uses a pseudorandom number generator in order to create test sets of complex Java objects, that can be automatically generated and directly used. Along with that, we also show usage of this tool in case study focused on performance evaluation of a real cashier system.


  1. D. W. Dyer. Uncommon math. Accessed: 2018-05-05. [Online]. Available: http://maths.uncommons.org/
  2. Random string utils. Accessed: 2018-05-05. [Online]. Available: https://commons.apache.org/proper/commons-lang/javadocs/api-2.6/org/apache/commons/lang/RandomStringUtils.html
  3. P. BrÃl’maud, Markov chains : Gibbs fields, Monte Carlo simulation and queues, ser. Texts in applied mathematics. New York, Berlin, Heidelberg: Springer, 1999. ISBN 0-387-98509-3. [Online]. Available: http://opac.inria.fr/record=b1094914
  4. F. Bazzichi and I. Spadafora, “An automatic generator for compiler testing,” IEEE Trans. Softw. Eng., vol. 8, no. 4, pp. 343–353, Jul. 1982. http://dx.doi.org/10.1109/TSE.1982.235428. [Online]. Available: http://dx.doi.org/10.1109/TSE.1982.235428
  5. B. Wichmann. Some Remarks About Random Testing. Accessed: 2018-05-05. [Online]. Available: http://www.npl.co.uk/upload/pdf/random_testing.pdf
  6. C. C. Michael, G. E. McGraw, M. A. Schatz, and C. C. Walton, “Genetic algorithms for dynamic test data generation,” in Automated Software Engineering, 1997. Proceedings., 12th IEEE International Conference, Nov 1997. http://dx.doi.org/10.1109/ASE.1997.632858 pp. 307–308.
  7. S. Poulding and J. A. Clark, “Efficient software verification: Statistical testing using automated search,” IEEE Transactions on Software Engineering, vol. 36, no. 6, pp. 763–777, Nov 2010. http://dx.doi.org/10.1109/TSE.2010.24
  8. L. Ma, C. Artho, C. Zhang, H. Sato, J. Gmeiner, and R. Ramler, “Grt: An automated test generator using orchestrated program analysis,” in 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), Nov 2015. http://dx.doi.org/10.1109/ASE.2015.102 pp. 842–847.
  9. C. Koleejan, B. Xue, and M. Zhang, “Code coverage optimisation in genetic algorithms and particle swarm optimisation for automatic software test data generation,” in 2015 IEEE Congress on Evolutionary Computation (CEC), May 2015. http://dx.doi.org/10.1109/CEC.2015.7257026. ISSN 1089-778X pp. 1204–1211.
  10. K. Salvesen, J. P. Galeotti, F. Gross, G. Fraser, and A. Zeller, “Using dynamic symbolic execution to generate inputs in search-based gui testing,” in 2015 IEEE/ACM 8th International Workshop on Search-Based Software Testing, May 2015. http://dx.doi.org/10.1109/SBST.2015.15 pp. 32–35.
  11. Mockaroo. Accessed: 2018-05-05. [Online]. Available: https://www.mockaroo.com/
  12. Dtm test xml generator. Accessed: 2018-05-05. [Online]. Available: http://www.sqledit.com/xmlgenerator/
  13. Redgate. Accessed: 2018-05-05. [Online]. Available: http://www.red-gate.com/products/sql-development/sql-data-generator/
  14. Podam - pojo data mocker. Accessed: 2018-05-05. [Online]. Available: https://github.com/mtedone/podam
  15. M. Bures and B. S. Ahmed, “On the effectiveness of combinatorial interaction testing: A case study,” in 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C), July 2017. http://dx.doi.org/10.1109/QRS-C.2017.20 pp. 69–76.
  16. B. S. Ahmed, L. M. Gambardella, W. Afzal, and K. Z. Zamli, “Handling constraints in combinatorial interaction testing in the presence of multi objective particle swarm and multithreading,” Information and Software Technology, vol. 86, pp. 20 – 36, 2017. http://dx.doi.org/https://doi.org/10.1016/j.infsof.2017.02.004. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0950584917301349