Logo PTI Logo FedCSIS

Position Papers of the 19th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 40

A generic method of pose generation in molecular docking via quadratic unconstrained binary optimization

,

DOI: http://dx.doi.org/10.15439/2024F3588

Citation: Position Papers of the 19th Conference on Computer Science and Intelligence Systems, M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 40, pages 6971 ()

Full text

Abstract. Docking of a ligand onto the binding pocket of its protein target, designated as the molecular docking problem, is a very important method for structure-based drug design. We have implemented a generic pose generation method for molecular docking by solving the quadratic unconstrained binary optimization (QUBO) problem with the Fujitsu digital annealer. In combination with the AutoDock 4 scoring function, the success rate for predicting the binding poses to be sufficiently close to their experimental binding poses, namely, with the root mean squared deviation (RMSD) less than 2 Å, was 84.3 \%, when benchmarking against part of the PDBbind core set (242 protein-ligand complexes). To our best knowledge, this is the first implementation of molecular docking that conforms with the QUBO formalism demonstrating a performance comparable with the conventional methods.

References

  1. Maia, E. H. B.; Assis, L. C.; De Oliveira, T. A.; Da Silva, A. M.; Taranto, A. G., Structure-based virtual screening: from classical to artificial intelligence. Frontiers in chemistry 2020, 8, 343.
  2. Varela‐Rial, A.; Majewski, M.; De Fabritiis, G., Structure based virtual screening: Fast and slow. Wiley Interdisciplinary Reviews: Computational Molecular Science 2022, 12 (2), e1544.
  3. Burley, S. K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chao, H.; Chen, L.; Craig, P. A.; Crichlow, G. V.; Dalenberg, K.; Duarte, J. M., RCSB Protein Data Bank (RCSB. org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Research 2023, 51 (D1), D488-D508.
  4. Tingle, B.; Tang, K.; Castanon, J.; Gutierrez, J.; Khurelbaatar, M.; Dandarchuluun, C.; Moroz, Y.; Irwin, J., ZINC-22-A free multi-billion-scale database of tangible compounds for ligand discovery. 2022.
  5. Ruddigkeit, L.; Van Deursen, R.; Blum, L. C.; Reymond, J.-L., Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. Journal of chemical information and modeling 2012, 52 (11), 2864-2875.
  6. Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C., The Cambridge structural database. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials 2016, 72 (2), 171-179R.
  7. Fu, H.; Chen, H.; Blazhynska, M.; Goulard Coderc de Lacam, E.; Szczepaniak, F.; Pavlova, A.; Shao, X.; Gumbart, J. C.; Dehez, F.; Roux, B., Accurate determination of protein: ligand standard binding free energies from molecular dynamics simulations. Nature Protocols 2022, 17 (4), 1114-1141..
  8. Heinzelmann, G.; Gilson, M. K., Automation of absolute protein-ligand binding free energy calculations for docking refinement and compound evaluation. Scientific reports 2021, 11 (1), 1-18.
  9. Wang, E.; Fu, W.; Jiang, D.; Sun, H.; Wang, J.; Zhang, X.; Weng, G.; Liu, H.; Tao, P.; Hou, T., VAD-MM/GBSA: A Variable Atomic Dielectric MM/GBSA Model for Improved Accuracy in Protein–Ligand Binding Free Energy Calculations. Journal of Chemical Information and Modeling 2021.
  10. Dittrich, J.; Schmidt, D.; Pfleger, C.; Gohlke, H., Converging a knowledge-based scoring function: DrugScore2018. Journal of chemical information and modeling 2018, 59 (1), 509-521.
  11. Bao, J.; He, X.; Zhang, J. Z., Development of a New Scoring Function for Virtual Screening: APBScore. Journal of Chemical Information and Modeling 2020, 60 (12), 6355-6365.
  12. Cavasotto, C. N.; Aucar, M. G., High-throughput docking using quantum mechanical scoring. Frontiers in chemistry 2020, 8, 246.
  13. Kadukova, M.; Machado, K. d. S.; Chacón, P.; Grudinin, S., KORP-PL: a coarse-grained knowledge-based scoring function for protein–ligand interactions. Bioinformatics 2021, 37 (7), 943-950.
  14. Yang, C.; Zhang, Y., Lin_F9: A Linear Empirical Scoring Function for Protein–Ligand Docking. Journal of Chemical Information and Modeling 2021.
  15. Schneider, C.; Buchanan, A.; Taddese, B.; Deane, C. M., DLAB: deep learning methods for structure-based virtual screening of antibodies. Bioinformatics 2022, 38 (2), 377-383.
  16. Li, H.; Sze, K. H.; Lu, G.; Ballester, P. J., Machine‐learning scoring functions for structure‐based virtual screening. Wiley Interdisciplinary Reviews: Computational Molecular Science 2021, 11 (1), e1478.
  17. Ricci-Lopez, J.; Aguila, S. A.; Gilson, M. K.; Brizuela, C. A., Improving structure-based virtual screening with ensemble docking and machine learning. Journal of Chemical Information and Modeling 2021, 61 (11), 5362-5376.
  18. McNutt, A. T.; Francoeur, P.; Aggarwal, R.; Masuda, T.; Meli, R.; Ragoza, M.; Sunseri, J.; Koes, D. R., GNINA 1.0: molecular docking with deep learning. Journal of cheminformatics 2021, 13 (1), 1-20.
  19. Eberhardt, J.; Santos-Martins, D.; Tillack, A. F.; Forli, S., AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling 2021, 61 (8), 3891-3898.
  20. Allen, W. J.; Balius, T. E.; Mukherjee, S.; Brozell, S. R.; Moustakas, D. T.; Lang, P. T.; Case, D. A.; Kuntz, I. D.; Rizzo, R. C., DOCK 6: Impact of new features and current docking performance. Journal of computational chemistry 2015, 36 (15), 1132-1156.
  21. Ypma, T. J., Historical development of the Newton–Raphson method. SIAM review 1995, 37 (4), 531-551.
  22. Willsch, D.; Willsch, M.; Gonzalez Calaza, C. D.; Jin, F.; De Raedt, H.; Svensson, M.; Michielsen, K., Benchmarking Advantage and D-Wave 2000Q quantum annealers with exact cover problems. Quantum Information Processing 2022, 21 (4), 141.
  23. Şeker, O.; Tanoumand, N.; Bodur, M., Digital annealer for quadratic unconstrained binary optimization: a comparative performance analysis. Applied Soft Computing 2022, 127, 109367.
  24. Woods, B. D.; Kochenberger, G.; Punnen, A. P., QUBO Software. In The Quadratic Unconstrained Binary Optimization Problem, Springer: 2022; pp 301-311
  25. Zaman, M.; Tanahashi, K.; Tanaka, S., PyQUBO: Python library for mapping combinatorial optimization problems to QUBO form. IEEE Transactions on Computers 2021, 71 (4), 838-850.
  26. Kochenberger, G.; Hao, J.-K.; Glover, F.; Lewis, M.; Lü, Z.; Wang, H.; Wang, Y., The unconstrained binary quadratic programming problem: a survey. Journal of combinatorial optimization 2014, 28 (1), 58-81.
  27. Tavares, G., New algorithms for Quadratic Unconstrained Binary Optimization (QUBO) with applications in engineering and social sciences. Rutgers The State University of New Jersey-New Brunswick: 2008.
  28. Koh, Y. W.; Nishimori, H., Quantum and classical annealing in a continuous space with multiple local minima. Physical Review A 2022, 105 (6), 062435.
  29. Wang, R.; Fang, X.; Lu, Y.; Yang, C.-Y.; Wang, S., The PDBbind database: methodologies and updates. Journal of medicinal chemistry 2005, 48 (12), 4111-4119.
  30. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L., Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 2019, 32.