Logo PTI Logo FedCSIS

Position Papers of the 20th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 44

DBRow: A Density-Based algorithm for autonomous navigation within crop rows

,

DOI: http://dx.doi.org/10.15439/2025F7442

Citation: Position Papers of the 20th Conference on Computer Science and Intelligence Systems, M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 44, pages 109117 ()

Full text

Abstract. This paper introduces DBRow, a density-based algorithm designed to improve autonomous navigation within crop rows, addressing the growing need for efficient agricultural robotics to boost productivity and tackle labour shortages. DBRow integrates Simultaneous Localisation and Mapping (SLAM) with Density-Based Spatial Clustering of Applications with Noise (DBSCAN), overcoming the limitations of previous navigation systems that relied solely on LIDAR data for NMBU's FRE participation. Experiments conducted in simulated and controlled indoor environments evaluated DBRow using A* path planning algorithm. The results show some weaknesses in the simulated environment, but it performs well in the controlled indoor environment. The paper calls for further testing for statistically significant results and suggests future enhancements, including LIDAR preprocessing improvements and machine learning integration, to optimise navigation accuracy and automate tasks like pesticide application.

References

  1. Francisco Affonso et al. “CROW: A Self-Supervised Crop Row Navigation Algorithm for Agricultural Fields”. en. In: Journal of Intelligent & Robotic Systems 111.1 (Feb. 2025), p. 28. ISSN: 1573-0409. DOI: 10.1007/s10846-025-02219-2. URL: https://link.springer.com/10.1007/s10846-025-02219-2 (visited on 03/10/2025).
  2. Algorithm walkthrough for tuning — Cartographer ROS documentation. URL: https://google-cartographer-ros.readthedocs.io/en/latest/algo_walkthrough.html (visited on 03/17/2025).
  3. Johannes Barthel et al. Virtual Maize Field. URL: https://github.com/FieldRobotEvent/virtual_maize_field.
  4. Cartographer ROS Integration — Cartographer ROS documentation. URL: https://google-cartographer-ros.readthedocs.io/en/latest/ (visited on 03/17/2025).
  5. Stanchniss Cyrill. RANSAC – Random Sample Consensus. Photogrammetry & Robotics Lab. University of Bonn. URL : https://www.ipb.uni-bonn.de/html/teaching/photo12-2021/2021-pho2-06-ransac.pptx.pdf (visited on 04/04/2025).
  6. DBSCAN — scikit-learn 1.6.1 documentation. URL: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html (visited on 04/13/2025).
  7. Martin Ester et al. “A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise”. en. In: (1996). (Visited on 02/17/2025).
  8. Martin A. Fischler and Robert C. Bolles. “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography”. en. In: Communications of the ACM 24.6 (June 1981), pp. 381–395. ISSN : 0001-0782, 1557-7317. DOI: 10.1145/358669.358692. URL: https://dl.acm.org/doi/10.1145/358669.358692 (visited on 03/24/2025).
  9. gazebo_ros_pkgs/gazebo_plugins/worlds/gazebo_ros_skid_steer_drive_demo.world at ros2 · ros-simulation/gazebo_ros_pkgs. URL: https://github.com/ros-simulation/gazebo_ros_pkgs/blob/ros2/gazebo_plugins/worlds/gazebo_ros_skid_steer_drive_demo.world (visited on 04/09/2025).
  10. Peter Hart, Nils Nilsson, and Bertram Raphael. “A Formal Basis for the Heuristic Determination of Minimum Cost Paths”. In: IEEE Transactions on Systems Science and Cybernetics 4.2 (1968), pp. 100–107. ISSN : 0536-1567. DOI: 10.1109/TSSC.1968.300136. URL: http://ieeexplore.ieee.org/document/4082128/ (visited on 03/31/2025).
  11. Wolfgang Hess et al. “Real-time loop closure in 2D LIDAR SLAM”. en. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden: IEEE, May 2016, pp. 1271–1278. ISBN: 978-1-4673-8026-3. DOI : 10.1109/ICRA.2016.7487258. URL: http://ieeexplore.ieee.org/document/7487258/ (visited on 03/17/2025).
  12. Lua configuration reference documentation — Cartographer ROS documentation. URL: https://google-cartographer-ros.readthedocs.io/en/latest/configuration.html (visited on 04/09/2025).
  13. Nav2 — Nav2 1.0.0 documentation. URL : https://docs.nav2.org/ (visited on 02/27/2025).
  14. Navigation Concepts — Nav2 1.0.0 documentation. URL : https://docs.nav2.org/concepts/index.html#concepts (visited on 02/27/2025).
  15. OS1: High-Res Mid-Range Lidar Sensor for Automation & Security | Ouster. URL: https://ouster.com/products/hardware/os1-lidar-sensor (visited on 04/09/2025).
  16. Patel. Implementation notes. URL: https://theory.stanford.edu/~amitp/GameProgramming/ImplementationNotes.html (visited on 04/01/2025).
  17. Patel. Introduction to A*. URL: https://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html (visited on 04/01/2025).
  18. Point Cloud Library (PCL): pcl::CropBox< pcl::PCLPointCloud2 > Class Reference. URL : https://pointclouds.org/documentation/classpcl_1_1_crop_box_3_01pcl_1_1_p_c_l_point_cloud2_01_4.html (visited on 04/09/2025).
  19. Sebastian Raschka and Vahid Mirjalili. “Locating regions of high density via DBSCAN”. eng. In: Python machine learning: machine learning and deep learning with Python, scikit-learn, and TensorFlow 2. 3rd ed. Birmingham: Packt Publishing, 2020, pp. 376–383. ISBN: 978-1-78995-575-0 978-1-78995-829-4.
  20. ros-perception/pointcloud_to_laserscan: Converts a 3D Point Cloud into a 2D laser scan. URL: https://github.com/ros-perception/pointcloud_to_laserscan (visited on 04/09/2025).
  21. Setting Up Navigation Plugins — Nav2 1.0.0 documentation. URL: https://docs.nav2.org/setup_guides/algorithm/select_algorithm.html#select-algorithm (visited on 03/05/2025).
  22. TurtleBot3. URL: https://emanual.robotis.com/docs/en/platform/turtlebot3/features/#features (visited on 04/09/2025).
  23. velodyne_simulator/velodyne_description/urdf/VLP-16.urdf.xacro at master · lmark1/velodyne_simulator. URL : https://github.com/lmark1/velodyne_simulator/blob/master/velodyne_description/urdf/VLP-16.urdf.xacro (visited on 04/09/2025).
  24. Stavros G. Vougioukas. “Agricultural Robotics”. en. In: Annual Review of Control, Robotics, and Autonomous Systems 2.1 (May 2019), pp. 365–392. ISSN : 2573-5144, 2573-5144. DOI: 10.1146/annurev-control-053018-023617. URL: https://www.annualreviews.org/doi/10.1146/annurev-control-053018- 023617 (visited on 04/25/2025).