Logo PTI Logo FedCSIS

Position Papers of the 20th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 44

Detecting Spatial Ordering of Nanoparticles with Geometric Deep Learning

,

DOI: http://dx.doi.org/10.15439/2025F8934

Citation: Position Papers of the 20th Conference on Computer Science and Intelligence Systems, M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 44, pages 5560 ()

Full text

Abstract. Nanoparticle dispersion in heterogeneous catalysts plays a critical role in catalytic performance. We propose a robust and generalizable deep learning approach for classifying dispersion patterns in palladium on carbon (Pd/C) catalysts. Our method leverages graph neural networks (GNNs) that operate directly on particle location data extracted from scanning electron microscopy (SEM) images, avoiding reliance on image features that may introduce bias. It has an advantage over traditional image-based methods which risk overfitting to visual characteristics of the image unrelated to the spatial distribution of the nanoparticles. We validate the performance of our proposed GNN architecture on multiple Pd/C samples with distinct carbon support types, showing that our approach can reliably identify dispersion defects. The results highlight the potential of GNNs as a promising alternative for structure-based analysis and quality assessment of nanomaterial-based catalysts.

References

  1. Hutchings, G. J. 2009. Heterogeneous catalysts—discovery and design. J. MaterĊhem. 19(9), 1222–1235. https://doi.org/10.1039/B812300B
  2. Tao, F. (Ed.). 2014. Metal Nanoparticles for Catalysis: Advances and Applications. Catalysis Series. Royal Society of Chemistry. https://doi.org/10.1039/9781782621034
  3. Lunxiang, L. and Liebscher, J. 2007. Carbon–Carbon Coupling Reactions Catalyzed by Heterogeneous Palladium Catalysts. Chem. Rev. 107(1), 133–173. https://doi.org/10.1021/cr0505674
  4. Mao, Z., Gu, H. and Lin, X. 2021. Recent Advances of Pd/C-Catalyzed Reactions. Catalysts 11(9), 1078. https://doi.org/10.3390/catal11091078
  5. Felpin, F.-X. 2014. Ten Years of Adventures with Pd/C Catalysts: From Reductive Processes to Coupling Reactions. Synlett 25(08), 1055–1067. https://doi.org/10.1055/s-0033-1340668
  6. Suga, M. et al. 2014. Recent progress in scanning electron microscopy for the characterization of fine structural details of nanomaterials. Prog. Solid State Chem. 42(1–2), 1–21. https://doi.org/10.1016/j.progsolidstchem. 2014.02.001
  7. Boiko, D. A., Pentsak, E. O., Cherepanova, V. A. et al. 2020. Electron microscopy dataset for the recognition of nanoscale ordering effects and location of nanoparticles. Sci. Data 7, 101. https://doi.org/10.1038/s41597-020-0439-1
  8. Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M. and Solomon, J. M. 2019. Dynamic Graph CNN for Learning on Point Clouds. ACM Trans. Graph. 38(5), Article 146, 12 pages. https://doi.org/10.1145/3326362
  9. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P. and Bengio, Y. 2018. Graph Attention Networks. In: Int. Conf. on Learning Representations (ICLR). https://openreview.net/forum?id=rJXMpikCZ
  10. LeCun, Y., Bengio, Y. and Hinton, G. 2015. Deep learning. Nature 521, 436–444. https://doi.org/10.1038/nature14539
  11. Fahim, S. F., Tasnim, N., Kibria, G., Morshed, M. S., Nishat, Z. T., Azad, S. B., Nath, S., Dey, A. L., Shuddho, M. A. and Niloy, N. T. 2024. A Proficient Convolutional Neural Network for Classification of Bone Age from X-Ray Images. In: Proc. 9th Int. Conf. on Research in Intelligent Computing in Engineering, Ann. Comput. Sci. Inf. Syst. 42, 17–21. http://dx.doi.org/10.15439/2024R60
  12. Bruno, A., Moroni, D. and Martinelli, M. 2023. Efficient Deep Learning Approach for Olive Disease Classification. In: Proc. 18th Conf. on Computer Science and Intelligence Systems, eds. Ganzha, M., Maciaszek, L., Paprzycki, M., Ślęzak, D., ACSIS 35, 889–894. http://dx.doi.org/10.15439/2023F4794
  13. Ciecholewski, M. 2023. Urban Scene Semantic Segmentation Using the U-Net Model. In: Proc. 18th Conf. on Computer Science and Intelligence Systems, eds. Ganzha, M., Maciaszek, L., Paprzycki, M., Ślęzak, D., ACSIS 35, 907–912. http://dx.doi.org/10.15439/2023F3686
  14. Faraz, K., Grenier, T., Ducottet, C. et al. 2022. Deep Learning Detection of Nanoparticles and Multiple Object Tracking of Their Dynamic Evolution During In Situ ETEM Studies. Sci. Rep. 12, 2484. https://doi.org/10.1038/s41598-022-06308-2
  15. Ronneberger, O., Fischer, P. and Brox, T. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W. and Frangi, A. (eds), Med. Image Comput. Comput.-Assist. Interv. – MICCAI 2015, Lect. Notes Comput. Sci. 9351. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_28
  16. Alnaasan, M., Al Zoubi, W., Alhammadi, S., Kang, J.-H., Kim, S. and Ko, Y. G. 2024. Well-Defined High Entropy-Metal Nanoparticles: Detection of the Multi-Element Particles by Deep Learning. J. Energy Chem. 98, 262–273. https://doi.org/10.1016/j.jechem.2024.06.038
  17. Mohsin, A. S. M. and Choudhury, S. H. 2024. Label-Free Quantification of Gold Nanoparticles at the Single-Cell Level Using a Multi-Column Convolutional Neural Network (MC-CNN). Analyst 149(8), 2412–2419. https://doi.org/10.1039/D3AN01982A
  18. Kirillov, A., et al., 2023. Segment Anything. In: Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Paris, France, pp. 3992–4003. https://doi.org/10.1109/ICCV51070.2023.00371
  19. Monteiro, G. A. A., Monteiro, B. A. A., dos Santos, J. A., et al., 2025. Pre-trained artificial intelligence-aided analysis of nanoparticles using the segment anything model. Sci. Rep. 15, 2341. https://doi.org/10.1038/s41598-025-86327-x
  20. Boiko, D. A., Pentsak, E. O., Cherepanova, V. A., Gordeev, E. G., and Ananikov, V. P., 2021. Deep neural network analysis of nanoparticle ordering to identify defects in layered carbon materials. Chem. Sci. 12, 7428–7441. https://doi.org/10.1039/D0SC05696K
  21. Simonovsky, M., and Komodakis, N., 2017. Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, pp. 29–38. https://doi.org/10.1109/CVPR.2017.11
  22. Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., and Bennamoun, M., 2021. Deep learning for 3D point clouds: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(12), 4338–4364. https://doi.org/10.1109/TPAMI.2020.3005434
  23. Zhang, S., Tong, H., Xu, J., and Maciejewski, R., 2019. Graph convolutional networks: a comprehensive review. Comput. Soc. Netw. 6, 11. https://doi.org/10.1186/s40649-019-0069-y
  24. Jiao, Z., Liu, Y., and Wang, Z., 2024. Application of graph neural network in computational heterogeneous catalysis. J. Chem. Phys. 161(17), 171001. https://doi.org/10.1063/5.0227821
  25. Gu, G. H., Noh, J., Kim, S., Back, S., Ulissi, Z., and Jung, Y., 2020. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. J. Phys. Chem. Lett. 11(9), 3185–3191. https://doi.org/10.1021/acs.jpclett.0c00634
  26. Mehta, B., Kothari, K., Nambiar, R., and Shrawne, S., 2024. Toxic molecule classification using graph neural networks and few-shot learning. In: Proc. 19th Conf. Comput. Sci. Intell. Syst. (FedCSIS), ACSIS, vol. 41, pp. 105–110. http://dx.doi.org/10.15439/2024F3810
  27. Hinton, G. E., and Roweis, S., 2002. Stochastic neighbor embedding. Adv. Neural Inf. Process. Syst. 15. https://dl.acm.org/doi/10.5555/2968618.2968725
  28. Dosovitskiy, A., et al., 2020. An image is worth 16×16 words: Transformers for image recognition at scale. arXiv preprint https://arxiv.org/abs/2010.11929. https://doi.org/10.48550/arXiv.2010.11929
  29. Oquab, M., et al., 2023. DINOv2: Learning robust visual features without supervision. arXiv preprint https://arxiv.org/abs/2304.07193. https://doi.org/10.48550/arXiv.2304.07193
  30. Li, Q., Han, Z., and Wu, X.-M., 2018. Deeper insights into graph convolutional networks for semi-supervised learning. Proc. AAAI Conf. Artif. Intell. 32(1). https://doi.org/10.1609/aaai.v32i1.11604
  31. Boiko, D. A., Sulimova, V. V., Kurbakov, M. Y., Kopylov, A. V., Seredin, O. S., Cherepanova, V. A., Pentsak, E. O., and Ananikov, V. P., 2022. Automated recognition of nanoparticles in electron microscopy images of nanoscale palladium catalysts. Nanomaterials 12(21), 3914. https://doi.org/10.3390/nano12213914
  32. OpenCV team, 2025. OpenCV: Open Source Computer Vision Library. Accessed: 2025-05-25. https://docs.opencv.org/4.x/d0/d7a/classcv_1_1SimpleBlobDetector.html
  33. Kingma, D. P., and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint https://arxiv.org/abs/1412.6980. https://doi.org/10.48550/arXiv.1412.6980
  34. He, K., Zhang, X., Ren, S., and Sun, J., 2016. Deep residual learning for image recognition. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 770–778. https://doi.org/10.1109/CVPR.2016.90
  35. Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., and Xie, S., 2022. A ConvNet for the 2020s. In: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 11976–11986. https://doi.org/10.1109/CVPR52688.2022.01167
  36. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L., 2009. ImageNet: A large-scale hierarchical image database. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Miami, FL, USA, pp. 248–255. https://doi.org/10.1109/CVPR.2009.5206848