Detecting Spatial Ordering of Nanoparticles with Geometric Deep Learning
Jan Krupiński, Kazimierz Kiełkowicz
DOI: http://dx.doi.org/10.15439/2025F8934
Citation: Position Papers of the 20th Conference on Computer Science and Intelligence Systems, M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 44, pages 55–60 (2025)
Abstract. Nanoparticle dispersion in heterogeneous catalysts plays a critical role in catalytic performance. We propose a robust and generalizable deep learning approach for classifying dispersion patterns in palladium on carbon (Pd/C) catalysts. Our method leverages graph neural networks (GNNs) that operate directly on particle location data extracted from scanning electron microscopy (SEM) images, avoiding reliance on image features that may introduce bias. It has an advantage over traditional image-based methods which risk overfitting to visual characteristics of the image unrelated to the spatial distribution of the nanoparticles. We validate the performance of our proposed GNN architecture on multiple Pd/C samples with distinct carbon support types, showing that our approach can reliably identify dispersion defects. The results highlight the potential of GNNs as a promising alternative for structure-based analysis and quality assessment of nanomaterial-based catalysts.
References
- Hutchings, G. J. 2009. Heterogeneous catalysts—discovery and design. J. MaterĊhem. 19(9), 1222–1235. https://doi.org/10.1039/B812300B
- Tao, F. (Ed.). 2014. Metal Nanoparticles for Catalysis: Advances and Applications. Catalysis Series. Royal Society of Chemistry. https://doi.org/10.1039/9781782621034
- Lunxiang, L. and Liebscher, J. 2007. Carbon–Carbon Coupling Reactions Catalyzed by Heterogeneous Palladium Catalysts. Chem. Rev. 107(1), 133–173. https://doi.org/10.1021/cr0505674
- Mao, Z., Gu, H. and Lin, X. 2021. Recent Advances of Pd/C-Catalyzed Reactions. Catalysts 11(9), 1078. https://doi.org/10.3390/catal11091078
- Felpin, F.-X. 2014. Ten Years of Adventures with Pd/C Catalysts: From Reductive Processes to Coupling Reactions. Synlett 25(08), 1055–1067. https://doi.org/10.1055/s-0033-1340668
- Suga, M. et al. 2014. Recent progress in scanning electron microscopy for the characterization of fine structural details of nanomaterials. Prog. Solid State Chem. 42(1–2), 1–21. https://doi.org/10.1016/j.progsolidstchem. 2014.02.001
- Boiko, D. A., Pentsak, E. O., Cherepanova, V. A. et al. 2020. Electron microscopy dataset for the recognition of nanoscale ordering effects and location of nanoparticles. Sci. Data 7, 101. https://doi.org/10.1038/s41597-020-0439-1
- Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M. and Solomon, J. M. 2019. Dynamic Graph CNN for Learning on Point Clouds. ACM Trans. Graph. 38(5), Article 146, 12 pages. https://doi.org/10.1145/3326362
- Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P. and Bengio, Y. 2018. Graph Attention Networks. In: Int. Conf. on Learning Representations (ICLR). https://openreview.net/forum?id=rJXMpikCZ
- LeCun, Y., Bengio, Y. and Hinton, G. 2015. Deep learning. Nature 521, 436–444. https://doi.org/10.1038/nature14539
- Fahim, S. F., Tasnim, N., Kibria, G., Morshed, M. S., Nishat, Z. T., Azad, S. B., Nath, S., Dey, A. L., Shuddho, M. A. and Niloy, N. T. 2024. A Proficient Convolutional Neural Network for Classification of Bone Age from X-Ray Images. In: Proc. 9th Int. Conf. on Research in Intelligent Computing in Engineering, Ann. Comput. Sci. Inf. Syst. 42, 17–21. http://dx.doi.org/10.15439/2024R60
- Bruno, A., Moroni, D. and Martinelli, M. 2023. Efficient Deep Learning Approach for Olive Disease Classification. In: Proc. 18th Conf. on Computer Science and Intelligence Systems, eds. Ganzha, M., Maciaszek, L., Paprzycki, M., Ślęzak, D., ACSIS 35, 889–894. http://dx.doi.org/10.15439/2023F4794
- Ciecholewski, M. 2023. Urban Scene Semantic Segmentation Using the U-Net Model. In: Proc. 18th Conf. on Computer Science and Intelligence Systems, eds. Ganzha, M., Maciaszek, L., Paprzycki, M., Ślęzak, D., ACSIS 35, 907–912. http://dx.doi.org/10.15439/2023F3686
- Faraz, K., Grenier, T., Ducottet, C. et al. 2022. Deep Learning Detection of Nanoparticles and Multiple Object Tracking of Their Dynamic Evolution During In Situ ETEM Studies. Sci. Rep. 12, 2484. https://doi.org/10.1038/s41598-022-06308-2
- Ronneberger, O., Fischer, P. and Brox, T. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W. and Frangi, A. (eds), Med. Image Comput. Comput.-Assist. Interv. – MICCAI 2015, Lect. Notes Comput. Sci. 9351. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_28
- Alnaasan, M., Al Zoubi, W., Alhammadi, S., Kang, J.-H., Kim, S. and Ko, Y. G. 2024. Well-Defined High Entropy-Metal Nanoparticles: Detection of the Multi-Element Particles by Deep Learning. J. Energy Chem. 98, 262–273. https://doi.org/10.1016/j.jechem.2024.06.038
- Mohsin, A. S. M. and Choudhury, S. H. 2024. Label-Free Quantification of Gold Nanoparticles at the Single-Cell Level Using a Multi-Column Convolutional Neural Network (MC-CNN). Analyst 149(8), 2412–2419. https://doi.org/10.1039/D3AN01982A
- Kirillov, A., et al., 2023. Segment Anything. In: Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Paris, France, pp. 3992–4003. https://doi.org/10.1109/ICCV51070.2023.00371
- Monteiro, G. A. A., Monteiro, B. A. A., dos Santos, J. A., et al., 2025. Pre-trained artificial intelligence-aided analysis of nanoparticles using the segment anything model. Sci. Rep. 15, 2341. https://doi.org/10.1038/s41598-025-86327-x
- Boiko, D. A., Pentsak, E. O., Cherepanova, V. A., Gordeev, E. G., and Ananikov, V. P., 2021. Deep neural network analysis of nanoparticle ordering to identify defects in layered carbon materials. Chem. Sci. 12, 7428–7441. https://doi.org/10.1039/D0SC05696K
- Simonovsky, M., and Komodakis, N., 2017. Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, pp. 29–38. https://doi.org/10.1109/CVPR.2017.11
- Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., and Bennamoun, M., 2021. Deep learning for 3D point clouds: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(12), 4338–4364. https://doi.org/10.1109/TPAMI.2020.3005434
- Zhang, S., Tong, H., Xu, J., and Maciejewski, R., 2019. Graph convolutional networks: a comprehensive review. Comput. Soc. Netw. 6, 11. https://doi.org/10.1186/s40649-019-0069-y
- Jiao, Z., Liu, Y., and Wang, Z., 2024. Application of graph neural network in computational heterogeneous catalysis. J. Chem. Phys. 161(17), 171001. https://doi.org/10.1063/5.0227821
- Gu, G. H., Noh, J., Kim, S., Back, S., Ulissi, Z., and Jung, Y., 2020. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. J. Phys. Chem. Lett. 11(9), 3185–3191. https://doi.org/10.1021/acs.jpclett.0c00634
- Mehta, B., Kothari, K., Nambiar, R., and Shrawne, S., 2024. Toxic molecule classification using graph neural networks and few-shot learning. In: Proc. 19th Conf. Comput. Sci. Intell. Syst. (FedCSIS), ACSIS, vol. 41, pp. 105–110. http://dx.doi.org/10.15439/2024F3810
- Hinton, G. E., and Roweis, S., 2002. Stochastic neighbor embedding. Adv. Neural Inf. Process. Syst. 15. https://dl.acm.org/doi/10.5555/2968618.2968725
- Dosovitskiy, A., et al., 2020. An image is worth 16×16 words: Transformers for image recognition at scale. arXiv preprint https://arxiv.org/abs/2010.11929. https://doi.org/10.48550/arXiv.2010.11929
- Oquab, M., et al., 2023. DINOv2: Learning robust visual features without supervision. arXiv preprint https://arxiv.org/abs/2304.07193. https://doi.org/10.48550/arXiv.2304.07193
- Li, Q., Han, Z., and Wu, X.-M., 2018. Deeper insights into graph convolutional networks for semi-supervised learning. Proc. AAAI Conf. Artif. Intell. 32(1). https://doi.org/10.1609/aaai.v32i1.11604
- Boiko, D. A., Sulimova, V. V., Kurbakov, M. Y., Kopylov, A. V., Seredin, O. S., Cherepanova, V. A., Pentsak, E. O., and Ananikov, V. P., 2022. Automated recognition of nanoparticles in electron microscopy images of nanoscale palladium catalysts. Nanomaterials 12(21), 3914. https://doi.org/10.3390/nano12213914
- OpenCV team, 2025. OpenCV: Open Source Computer Vision Library. Accessed: 2025-05-25. https://docs.opencv.org/4.x/d0/d7a/classcv_1_1SimpleBlobDetector.html
- Kingma, D. P., and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint https://arxiv.org/abs/1412.6980. https://doi.org/10.48550/arXiv.1412.6980
- He, K., Zhang, X., Ren, S., and Sun, J., 2016. Deep residual learning for image recognition. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 770–778. https://doi.org/10.1109/CVPR.2016.90
- Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., and Xie, S., 2022. A ConvNet for the 2020s. In: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 11976–11986. https://doi.org/10.1109/CVPR52688.2022.01167
- Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L., 2009. ImageNet: A large-scale hierarchical image database. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Miami, FL, USA, pp. 248–255. https://doi.org/10.1109/CVPR.2009.5206848